Температура и другие важные характеристики сварочной дуги. Электрическая дуга, несчастный случай


Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.


Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

Влияние на дугу магнитных полей

При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

Столб сварочной дуги резко откланяется от нормального положения;
- дуга горит неустойчиво, часто обрывается;
- изменяется звук горения дуги - появляются хлопки.

Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

Уменьшить влияние магнитного дутья на сварочный процесс можно:

Выполнением сварки короткой дугой;
- наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
- подведением токоподвода ближе к дуге.

Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

Электрическая дуга - один из видов электрического разряда в газах. Всякое направ­ленное движение заряженных частиц между электродами в газах называется разрядом. Ме­сто дуги среди других видов разрядов в газах:

Дуговой разряд отличается от других:

1 - высокой температурой 4000 - 50 ООО К

2 - высокой силой тока 50-10 000 А

3 - слабым электрическим полем 10 - 60 В.

Называется дугой из-за характерной формы, которая возникает от взаимодействия за­ряженных частиц дуги с магнитным полем самой дуги. При увеличении тока магнитное поле может разрывать дуговой разряд

Ток в дуговом процессе протекает между электродами (полюсами дуги) через газ дуго­вого пространства.

Положительный электрод - анод.

Отрицательный электрод - катод

Различают дугу свободную (свободно расширяющуюся) и сжатую. Свободной (свобод­но расширяющейся) называется дуга оадиус которой, не ограничен ни в одном её сечении;

сжатой называется дуга радиус которой, ограничен хотя бы в одном сечении.

Распределение падения напряжения в дуге. В межэлектродном пространстве на­блюдается неравномерное распределение электрического поля (скачки потенциала в при - электродных областях) и в соответствии с зтим неравномерно падение напряжения по длине дуги.

Свободные электроны, которые есть в металлах под действием электрического поля при высокой температуре катода покидают его Потенциалом катодной области разгоняются и ионизуют атомы столба дуги Атомы столба могут ионизироваться и от высокой темпера­туры (соударением, фотоионизация) Электроны перемещаются в столбе дуги в сторону анода Приблизившись к аноду, попадают на него под действием электрического поля анод­ной области Ионы двигаются в противоположную сторону, бомбардируя катод

Сопротивление газового проводника является нелинейным и поэтому дуга не подчиня­ется Закону Ома

Статическая вольт-амперная характеристика дуги. В зависимости от плотности тока вольтамперная характеристика может быть падающей, пологой и возрастающей

При малых токах с увеличением тока интенсивно возрастает количество заряженных частиц, главным образом, из-за нагрева и увеличения эмиссии электронов с поверхности катода, а, значит, и соответствующего ей увеличения объемной ионизации в столбе дуги.

Сопротивление столба дуги при этом уменьшается и падает необходимое для поддержки разряда напряжение. Характе­ристика дуги - падающая.

При дальнейшем увеличении тока и ограниченном сечении электродов столб дуги немного сжимается и объем газа, ко­торый берет участие в переносе зарядов уменьшается. Это приводит к меньшей скорости роста числа заряженных частиц.

Напряжение дуги становится мало зависи­мым от тока. Характеристика - пологая.

В первых двух областях электрическое сопротивление дуги отрицательно (негативно). Эти области характерные для дуг со сравнительно малой плотностью тока. Дальнейший рост тока приводить к исчерпанию термоэмиссионной способности ка­тода. Количество заряженных частиц не увеличивается и сопротивление дуги становится положительным и почти постоянным. Появляется высокоионизованна» сжатая плазма, кото­рая по свойствам близка к металлическим проводникам. Такая дуга подчиняется закону Ома.

Энергетическая ёмкость различных областей дуги

Для приведенных цифр падение напряжения в областях дуги (дуга в парах железа) и характерных для ручной дуговой сварки значений тока:

В катодной области 14Вх100А=1,4 кВт на длине *10"5 см

В столбе дуги 25 В/см х 0,6 см х 100 А = 1,5 кВт на длине ^0.6 см

В анодной области 2,5 В х 100 А = 250 Вт на длине ^Ю"4 см.

Основные потребители энергии - катодная область и столб дуги, очевидно, что в них и происходят основные процессы, которые характеризуют физические явление, результатом которых является дуговой разряд.

При постоянных диаметрах электрода и расстояниях между ними электрические пара­метры дуги будут зависеть от материала электродов (эмиссия, пары металлов в столбе), состава газов в дуге, температуры электродов, состава газа в дуге (в столбе дуги).

То есть, электрические параметры дуги зависят от физических и геометрических фак­торов. Изменение размеров электродов и расстояния между ними влияет на электрические характеристики дуги

Сварочные дуги подразделяют (классифицируют):

По материалам электродов (Fe, W, Си и т. д.)

По составу газов (в воздухе, в парах металлов, в потоке защитных газов;

Плавящимся или неплавящимся электродом и т. п.

Физические процессы в катодной области

Электроны покидают поверхность катода и двигаются к аноду. Путь, который они про­ходят до первого столкновения с атомами газов дуги ограничивает катодную область. Рас­четы показывают, что это является * Ю"ь см для нормального давления и дуги в воздухе и в парах железа.

К катодной области принято относить эту область дуги (1C)"5 см) и саму поверхност­ность катода.

1) Общий электрический ток в катодной области состоит из электронного и ионного тока

Плотность тока (А/см2):

I = eo-rvWe’i© = e0n©W&

е0 - заряд электрона;

л© - количество электронов;

W© - скорость движения (дрейфа) электронов.

Если предположить равенство ппотности то­ков ионного и электронного (на самом I, > 1в), то

Ионы и электроны, которые проходят катодную область, накапливают кинетическую энергию:

Р _ П1фУф - _ тсЛЧэ.

где те, т© - соответствующие массы.

Поскольку они разгоняются электрическим полем, то энергия, которую они получают, будет Єо-ІЛ (произведение зарядов на разницу потенциалов):

Еф = Ее=Єо. ик

тогда скорости движения заряженных частиц:

w* = ; we = №., тогда

пе _ W9 _ у гпе _ I гп(

Масса электрона mQ, = 9,106-10"28 г

Масса протона mn = 1,66-10"24 г

1,66-10"24-55,84 _з19

Для иона железа AFe = 55,84; в этом случае:

о катод, отдают ему свою энергию, разогревая его, захватывают электрон, превращаясь в нейтральные атомы. Электроны из катода разгоняются до энергии eo U* ударяются в атомы столба дуги и ионизируют их.

Катодная эмиссия

Различают такие виды эмиссии электронов с поверхности катода:

Термоэлектронная;

Автоэлектронная (электростатическая);

Фотоэлектронная (внешний фотоэффект);

Вторичная (бомбардировка поверхности атомами, ионами, тяжелыми частицами, электронами и др.);

При сварке дуговыми способами наиболее часто встречается термо - и авто­электронная эмиссия.

Интенсивность эмиссии оценивают плотностью тока j [А/см2] (для сварки 102 ... 105 А/мм2).

Термоэлектронная эмиссия.

Свободным электронам, которые есть в твердом теле, не дает покинуть его электриче­ское поле - поверхностный потенциальный барьер.

Величина наименьшей энергии, которую необходимо придать электрону, чтобы он мог выйти из поверхности тела и удалиться на расстояние, при котором между ним и телом не­возможно взаимодействие называется работа выхода.

Всегда найдутся такие электроны, которые случайно наберут эту энергию и выйдут из тела. Но под действием электрического поля они сразу же возвращаются назад.

С ростом температуры тела количество электронов, которые имеют энергию, доста­точную для выхода из тела, увеличивается.

В электростатических расчетах работа выхода А* = е0 ф, где <р - потенциал выхода. Е0 = 1, А, = ф в эктрон-вольтах.

Плотность тока для термоэлектронной эмиссии определяется уравнением Ричардсона - Дештмена:

jT=AT2e“kf; jT = AT2e"^

А - постоянная, зависит от материала катода

Т - температура

к: - постоянная Больцмана к = 8,62 10‘5 эв/К = 1,38-10"23 ДжЖ

Ток термоэлектронной эмиссии оказывается на несколько порядков (в 100.... 10000 раз) меньше чем необходимый для катода при сварке, например, стали.

Но 8 катодной области есть объемный положи­тельный ионный заряд, который создает напряжен­ность поля 1-Ю6 В/см и больше. Электрическое по­ле такой напряженности изменяет условия эмиссии электронов из катода.

Работа выхода электронов уменьшается в со­ответствии с величиной напряженности поля в при - электродной (прикатодной) области. Это явление на­зывается эффект Шоттки. Работа выхода при нали­чии электрического поля е приповерхностной области катода уменьшается на величину: ДАв=е"2Е,/2 ДАВ =3,8-10“*Е

Е - напряженность электрического поляОсобую роль в объяснении явлений катодной эмиссии для аномально больших плот­ностей тока, характерных для сварки плавящимся электродом, играет электростатическая гипотеза (автоэлектронная эмиссия) Ленгмюра (1923 г). Поток электронов имеет волновые свойства Электрон - волна может проникнуть из катода в анод, не поднимаясь до потен­циального уровня, необходимого для эмиссии, а обходя его. Это называется туннельный переход Он происходит без расходования энергии.

При этом величина потенциального барьера должна быть меньше чем длина волны электрона в потоке. Длина волны потока электронов:

Ft - постоянная Планка ft =4,13-10"15 е-в с m - масса электрона V - скорость потока электронов.

у и в - константы, которые зависят от материала катода.

Фотоэмиссия (внешний фотоэффект, эффект Эйнштейна). При поглощении катодом квантов света могут появиться электроны, которые имеют энергию намного большую от ра­боты выхода. Условие возникновения фотоэмиссии (закон Эйнштейна)

Fi v £ ф + Уз mv2

fi - постоянная Планка F> = 6,626176 (36)- 10 м Дж-сек; v - частота световой волны;

m - масса электро. на

v - скорость электрона после эмиссии.

с - скорость светла в вакууме равна 299792458,0 (1,2) м/сек;

vo, *о - граничные частота и длина волны света, которые могут вызвать фотоэмиссию.

Смесь газов ионизуется иначе, чем каждый отдельный газ из-за того, что электронный газ, который создается в результате ионизации будет совместным для всех составных газо­вой смеси. Степень ионизации смеси:

■Л-тс п-д Р’

п - количество частиц;

S - диаметр взаимодействия частиц (диаметр Рамзауэра);

Р - внешнее давление.

Средняя квадратическая скорость определяется из средней энергии теплового движе­ния.

к - постоянная Больцмана.

Свободный пробег иона - X* свободный пробег нейтрального атома. Свободный пробег электрона Л*о * 4ІЛп (эффект Рамзауэра).

Расчёты показывают, что при массах иона железа и электрона: пір** = 56-1,66-1 O"2* г, me0 = 9,106 10’28 г,

соотношение их подвижностей составит:

Очевидно, что и ток ионный в 1830 раз меньше чем ток электронный. Из приведенных зависимостей с учетом давления подвижность электронов будет:

ь. =й-Ц-Ц - ■Jt ps

В = 3,62-10‘13 - безразмерная величина;

5 - диаметр взаимодействия частиц (Рамзауэра).

Скорость дрейфа электрона в столбе дуги:

В расчетах столб дуги принимаемая цилиндрическим по Форме, однородным с посто­янной по сечению плотностью тока - каналовая модель К. К. Хренова.

Длина столба дуги практически равняется длине дуги (в пределах 0.1 - 15 мм). Паде­ние напряжения в столбе дуги пропорционально длине столба:

Электрическое поле анода отбрасывает положительные ионы в столб дуги, вместо этого притягивая электроны. Создается объемный отрицательный заряд. Из поверхностного анода не происходит эмиссии положительных ионов (за случаем отдельных видов угольной дуги). В связи с этим ток анодной области - это чисто электронный ток га = /«<>.

Длина анодной области приблизительно равна длине свободного пробега электронов от последнего соударения с атомом. Объемный отрицательный заряд анодной области вы­зывает анодное падение напряжения, которое мало зависит от материала анода, газов дуги, тока через дугу и равняется 2 ... 3 В. Электрон, достигая анода, отдает ему свою кинетиче­скую энергию, а также работу выхода, которая была потрачена на отрыв электрона от като­да.

Вольт-амперная характеристика дуги, которая свободно расширяется (свободная)

Дуговой разряд - устойчивая система. При постоянном питании энергией поддержива­ет себя в широком интервале режимов. Всякое нарушения равновесия вызывает такое из­менение параметров дуги, чтобы дуговой процесс остался (не прерывался). Границы. в ко­торых возможны дуговые процессы и характер изменения параметров дуги в ответ на нару­шения равновесия, определяют вольт-амперные характеристики.

Статические -1 - ос; динамические -1 - 0.

Рассматривать будем статические характеристики столба дуги.

Предположения (Каналовая модель К. К. Хренова):

Рассматриваем устойчивый дуговой процесс. Энергия подводится в дугу в неограни-ченном количестве и как угодно длительное время. Никакие внешние факторы не влияют на диаметр дуги.

Во всех зонах дуги строго поддерживается термодинамическое равновесие. При этом дуговая плазма подчиняется закону Саха.

Столб дуги представляет собой цилиндр, поверхность которого резко отделяет плазму дуги с температурой Тд от окружающей среды Т = 0.

Все тепповые потери столба дуги это потери на излучение внешней цилиндрической оболочки дуги и подчиняются закону Стефана-Больцмана.

Принцип минимума Штейнбека.

В Дуге, которая свободно расширяется, физические процессы устанавливаются таким образом, чтобы £-> min.

При устойчивом дуговом процессе тепловые потери столба дуги являются минимально возмож­ными для данных условий. Для заданного состояния газовой фазы и постоянных 1Я и Р электрическое поле будет зависеть только от 1^.

1. При увеличении температуры столба от Т6 увеличивается степень ионизации, подвижность электронов, плотность тока, напряженность электри­ческого поля, одновременно увеличиваются и потери на излучение.

2. С уменьшением температуры столба от ТБ уменьшается степень ионизации, плотность тока, но увеличивается напряженность поля. Расходы энер­гии увеличиваются.

При условии отсутствия ограничений на диаметр дуги, дуга в широких пределах явля­ется саморегулируемой системой. В дуге автоматически поддерживается минимально воз­можная напряженность поля. То есть, при постоянных значениях физических параметров среды и Ід в дуге устанавливается такие значения Т^ и гст, при которых напряженность поля в столбе будет минимальной.

Баланс энергии в областях дуги

Баланс энергии в столбе дуги f - доля электронного тока, |а - сварочный ток.

Энергия источника (тепло Джоуля-Ленца, выделяемое на сопротивлении плазмы столба дуги проходящему току):

ист - падение напряжения на столбе дуги.

Ионизация нейтральных атомов:

Ц - потенциал ионизации газов дугового промежутка.

Тепловые потери на излучение - RCT

Тепловые потери на конвекцию - R^*,

Тепловые потери на диффузию, заря­женных частиц в окружающую среду - RAWt>

Тепловые потери на эндотермические химические реакции - RXMt

Уравнение баланса:

(1 - f)l*U* + (1- f)l*Ui+ 4г - Rem = f-lu

Q* + R* или, в упрощённой форме:

Q* = lc*(UK - <р)

отсюда вывод:

чем лучше эмиссия электронов с поверхности катода (чем меньше работа выхода <р) - тем больше теплоты выделяется на катоде. Опытные данные показывают:

причём: 2 - характерно для неплавящихся катодов;

10 - характерно для плавящихся катодов.

3. Баланс энергии на аноде.

Уравнение баланса:

Р + А ■ Rem - Qt + R*

или, в упрощённой форме:

Q« = l~(U, + <р)

Опытные данные показывают:

Сжатая дуга.

Радиус столба дуги гет есть, прежде всего, функция тока в дуге:

рі/2,2 3 гст = С2 -гг - д

ЬЗ,!9Л2 а0 Uj

С увеличением тока увеличивается радиус дуги.

drCT „ Р12 2,-13 . Р12 Дід

Ид Стд3и{912 3 ИЛИ 2а‘3и!9,2",Ц

Дгст - темп увеличения радиуса дуги.

Темп изменения радиуса столба дуги (Дгст - темп) зависит от абсолютного значения то­ка. При малых токах радиус чувствителен к изменению тока, при больших токах - мало чув­ствителен. Предельно, когда I» -*«, Дгет = 0.

Когда Дгст = const, ток дуги определяется плотностью тока "і"

I = ЛГап " Urn-

Дуга, которая имеет такие свойства, называется сжатой. Если радиус хотя бы в одном сечении является величиной постоянной^Д^га называется сжатой.

Граница перехода от свободной к сжатой дуге зависит от потенциала ионизации U,. При малой величине U, нужен большой ток для перехода в сжатую дугу. Ограничение радиу­са может быть по площади одного из электродов, или через увеличение теплоотдачи из бо­ковой поверхности столба. Обдувая дугу потоком холодного газа, можно перевести ее в сжа­тую при малых значениях тока.

В реальных условиях на величину прироста Дгет могут влиять:

1. Радиус электродов, между которыми горит дуга.

2. Потенциал ионизации газа, в котором горит дуга.

3. Теплоотдача с боковой поверхности столба дуги.

Способы получения сжатой дуги

Исходя из этого, есть такие способы получения сжатой дуги:

Ограничение диаметра хотя бы одного из электродов;

Обдув дуги газом с высоким потенциалом ионизации и высокой теплопроводностью (Аг. Не);

Внешнее продольное магнитное поле (в технике не применяется).

Общее описание вольт-амперной характеристики дуги, исходя из изложенного может быть выполнено следующим образом:

1) Свободная дуга (свободно расширяющаяся). Радиус столба дуги гст увеличивается с

ростом ток^Ід. Температура дуги остаётся постоянной Т = const, степень ионизации х - очень малая. Падающую характеристику имеют и столб дуги и катодная область.

2) Сжатая слабоионизированая дуга. Радиус столба дуги гет - не увеличивается с рос­том т. ока^начинает заметно увеличиваться степень ионизации х и температура стопба дуги Та. Столб дуги имеет еще падающую характеристику. Катодная область - возрастающую

3) Си^т^ в^юок£ионизированая дуга. Степень ионизации х-*1 ВАХ столба дуги и ка­тодной области - возрастающие. Процессы в дуге перестают зависеть от полярности, мате­риалов электродов и свойств газов столба дуги. Дуга становится обычным проводником на уровне металлов (при 10 ООО К удельное сопротивление р = 1,5-1 O"4 Ом см), превращаясь в высококонцентрированный весьма устойчивый источник сварочного нагрева

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Следует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

ЛЕКЦИЯ 5

ЭЛЕКТРИЧЕСКАЯ ДУГА

Возникновение и физические процессы в электрической дуге. Размыкание электрической цепи при значительных токах и напряжениях сопровождается электрическим разрядом между расходящимися контактами. Воздушный промежуток между контактами иони­зируется и становится проводящим, в нем горит дуга. Процесс отключения состоит в деионизации воздушного промежутка между контактами, т. е. в прекращении электрического разряда и восстановлении диэлектрических свойств. При особых условиях: малых токах и напряжениях, разрыве цепи переменного тока в момент перехода тока через нуль, может произойти без электрического разряда. Такое отключение называется безыскровым разрывом.

Зависимость падения напряжения на разрядном промежутке от тока электрического разряда в газах приведена на рис. 1.

Электрическая дуга сопровождается высокой температурой. Поэтому дуга – явление не только электрическое, но и тепловое. В обычных условиях воздух хороший изолятор. Для пробоя 1см воздушного промежутка требуется напряжение 30кВ. Чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: свободных электронов и положительных ионов. Процесс отделения от нейтральной частицы электронов и обра­зования свободных электронов и положительно заряженных ионов называется ионизацией . Ионизация газа происходит под действием высокой температуры и электрического поля. Для дуговых процессов в электрических аппаратах наибольшее значение имеют процессы у электродов (термоэлектрон­ная и автоэлектронная эмиссии) и процессы в дуговом промежутке (термическая и ударная ионизация).

Термоэлектронной эмиссией называется испускание электронов с накаленной поверхности. При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в площадке контактирования. Площадка разогревается, расплавляется и образуется контактный перешеек из расплавленного металла. Перешеек при дальнейшем расхождении контактов разрывается и происходит испарение металла контактов. На отрицательном электроде образуется раскаленная площадка (катодное пятно), которая служит основа­нием дуги и очагом излучения элект­ронов. Термоэлектронная эмиссия является причиной возникновения электрической дуги при размыкании контактов. Плотность тока термоэлектронной эмиссии зависит от тем­пературы и материала электрода.

Автоэлектронной эмиссией называется явление испускания электронов с ка­тода под воздействием сильного электрического поля. При разомкнутых контактах к ним приложено напряжение сети. При замыкании контактов, по мере приближения подвижного контакта к неподвижному растет напряженность электрического поля между контактами. При критическом расстоянии между контактами напряженность поля достигает 1000 кВ/мм. Такой напряженности электрического поля достаточно для вырывания электронов из холодного катода. Ток автоэлектронной эмиссии мал служит только началом дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контак­тах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Возникновения электрической дуги при замыкании контактов происходит по причине автоэлектронной эмиссия.

Ударной ионизацией называется возникновение свободных электронов и положительных ионов при столкновении электронов с нейтральной частицей. Свободный электрон разбивает нейтральную частицу. В результате получатся новый свободный электрон и положительный ион. Новый электрон, в свою очередь, ионизирует следующую частицу. Чтобы электрон мог ионизировать частицу газа, он должен двигаться с определенной скоростью. Скорость электрона зависит от разности потенциалов на длине свободного пробега. Поэтому обычно указывается не скорость движения электрона, а минимальную разность потенциалов на длине свободного пути, чтобы электрон приобрел необходимую скорость. Эта разность потенциалов называется потенциал ионизации. Потенциал ионизации газовой смеси определяется самым низким из потенциалов ионизации входящих в газовую смесь компонентов и мало зависит от концентрации компонентов. Потенциал ионизации для газов составляет 13÷16В (азот, кислород, водород), для паров металла примерно в два раза ниже: 7,7В для паров меди.

Термическая ионизация происходит под воздействием высокой температуры. Температура ствола дуги достигает 4000÷7000 К, а иногда 15000 К. При такой температуре резко возрастает количество и скорость движущихся частиц газа. При столкновении атомы и молекулы разрушаются, образуя заряженные частицы. Основной характеристикой термической ионизации является сте­пень ионизации, представляющая собой отношение числа ионизированных атомов к общему числу атомов в дуговом промежутке. Поддержание возникшего дугового разряда достаточным числом свободных зарядов обеспечивается термической ионизацией.

Одновременно с процессами ионизации в дуге происходят обратные процессы деионизации – воссоединения заряженных частиц и образование нейтральных молекул. При возникновении дуги преобла­дают процессы ионизации, в устойчиво горящей дуге процессы ионизации и деионизации одинаково интенсивны, при преобладании процессов деиониза­ции дуга гаснет.

Деионизация происходит главным образом за счет рекомбинации и диф­фузии. Рекомбинацией называется процесс, при котором различно заряженные частицы, при­ходя в соприкосновение, образуют нейтральные частицы. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги. Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в стволе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур ствола дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожную роль. В дуге, обдуваемой сжатым воздухом, а также в быстро движущейся открытой дуге деионизация за счет диффузии может по значению быть близкой к рекомбинации. В дуге, горящей в узкой щели или закрытой камере, деионизация происходит за счет рекомби­нации.

ПАДЕНИЕ НАПРЯЖЕНИЯ НА ЭЛЕКТРИЧЕСКОЙ ДУГЕ

Падение напряжения вдоль стационарной дуги распределяется неравномерно. Картина изменения падения напряжения U д и продольного градиента напряжения (падение напряжения на единицу длины дуги) Е д вдоль дуги приведена на рис. 2.

Ход характеристик U д и Е д в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке порядка 10 -3 мм имеет место резкое падение напря­жения, называемое прикатод­ным U к и прианодным U а .

В прикатодной области образуется дефицит электронов из-за высокой их подвижности. В этой области образуется объемный положительный заряд, который обуславливает разность потенциалов U к , порядка 10÷20В. Напряженность поля в прикатодной области достигает 10 5 В/см и обеспечивает выход электронов с катода за счет автоэлектронной эмиссии. Кроме того, напряжение у катода обеспечивает выделение необходимой энергии для подогрева катода и обеспечения термоэлектронной эмиссии.

Рис. 2. Распределение напряжения на

стационарной дуге постоянного тока

В прианодной области образуется отрицательный объемный заряд, обуславливающий разность потенциалов U а . Направляющиеся к аноду электроны, ускоряются и выбивают из анода вторичные электроны, которые существуют вблизи анода.

Суммарное зна­чение прианодного и прикатодного падений напряжений называют приэлектродным падением напряжения:
и составляет 20-30В.

В остальной части дуги, называемой стволом дуги, падение напряжения U д прямо пропорционально длине дуги:

,

где E СТ – продольный градиент напряжения в стволе дуги, l СТ – длина ствола дуги.

Градиент здесь постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100÷200 В/см.

Таким образом, падение напряжения на дуговом промежутке:

УСТОЙЧИВОСТЬ ЭЛЕКТРИЧЕСКОЙ ДУГИ ПОСТОЯННОГО ТОКА

Чтобы погаситьэлектрическую дугу постоянного тока, необходимо создать условия, при которых в дуговом промежутке процессы деионизации превосходили бы процессы ионизации при всех значениях тока.

Для цепи (рис. 3), содержащей сопротивление R , индуктивность L , дуговой промежуток с падением напряжения U д , источник постоянного тока напряжением U , в переходном режиме (
) справедливо уравнение Кирхгофа:

, (1)

где – падение напряжения на ин­дуктивности при изменении тока.

При устойчиво горящей дуге (стационарное состояние
) выражение (1) принимает вид:

. (2)

Для погасания дуги необходимо, чтобы ток в ней все время уменьшался. Это означает, что
:

1. Условия возникновения и горения дуги

Размыкание электрической цепи при наличии в ней тока сопровождается электрическим разрядом между контактами. Если в отключаемой цепи ток и напряжение между контактами больше, чем критические для данных условий, то между контактами возникает дуга , продолжительность горения которой зависит от параметров цепи и условий деионизации дугового промежутка. Образование дуги при размыкании медных контактов возможно уже при токе 0,4-0,5 А и напряжении 15 В.

Рис. 1. Расположение в стационарной дуге постоянного тока напряжения U(a) и напряженности Е(б).

В дуге различают околокатодное пространство, ствол дуги и околоанодное пространство (рис. 1). Все напряжение распределяется между этими областями U к, U сд, U а. Катодное падение напряжения в дуге постоянного тока 10-20 В, а длина этого участка составляет 10–4-10–5 см, таким образом, около катода наблюдается высокая напряженность электрического поля (105-106 В/см). При таких высоких напряженностях происходит ударная ионизация. Суть ее заключается в том, что электроны, вырванные из катода силами электрического поля (автоэлектронная эмиссия) или за счет нагрева катода (термоэлектронная эмиссия), разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать один электрон с оболочки нейтрального атома, то произойдет ионизация. Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги.

Рис. 2. .

Проводимость плазмы приближается к проводимости металлов [у = 2500 1/(Ом×см)]/ В стволе дуги проходит большой ток и создается высокая температура. Плотность тока может достигать 10 000 А/см2 и более, а температура - от 6000 К при атмосферном давлении до 18000 К и более при повышенных давлениях.

Высокие температуры в стволе дуги приводят к интенсивной термоионизации, которая поддерживает большую проводимость плазмы.

Термоионизация - процесс образования ионов за счет соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения.

Чем больше ток в дуге, тем меньше ее сопротивление, а поэтому требуется меньшее напряжение для горения дуги, т. е. дугу с большим током погасить труднее.

При переменном токе напряжение источника питания u cд меняется синусоидально, так же меняется ток в цепи i (рис. 2), причем ток отстает от напряжения примерно на 90°. Напряжение на дуге u д, горящей между контактами выключателя, непостоянно. При малых токах напряжение возрастает до величины u з (напряжения зажигания), затем по мере увеличения тока в дуге и роста термической ионизации напряжение падает. В конце полупериода, когда ток приближается к нулю, дуга гаснет при напряжении гашения u г. В следующий полупериод явление повторяется, если не приняты меры для деионизации промежутка.

Если дуга погашена теми или иными способами, то напряжение между контактами выключателя должно восстановиться до напряжения питающей сети - u вз (рис. 2, точка А). Однако поскольку в цепи имеются индуктивные, активные и емкостные сопротивления, возникает переходный процесс, появляются колебания напряжения (рис. 2), амплитуда которых U в,max может значительно превышать нормальное напряжение. Для отключающей аппаратуры важно, с какой скоростью восстанавливается напряжение на участке АВ. Подводя итог, можно отметить, что дуговой разряд начинается за счет ударной ионизации и эмиссии электронов с катода, а после зажигания дуга поддерживается термоионизацией в стволе дуги.

В коммутационных аппаратах необходимо не только разомкнуть контакты, но и погасить возникшую между ними дугу.

В цепях переменного тока ток в дуге каждый полупериод проходит через нуль (рис. 2), в эти моменты дуга гаснет самопроизвольно, но в следующий полупериод она может возникнуть вновь. Как показывают осциллограммы, ток в дуге становится близким нулю несколько раньше естественного перехода через нуль (рис. 3, а ). Это объясняется тем, что при снижении тока энергия, подводимая к дуге, уменьшается, следовательно, уменьшается температура дуги и прекращается термоионизация. Длительность бестоковой паузы t п невелика (от десятков до нескольких сотен микросекунды), но играет важную роль в гашении дуги. Если разомкнуть контакты в бестоковую паузу и развести их с достаточной скоростью на такое расстояние, чтобы не произошел электрический пробой, то цепь будет отключена очень быстро.

Во время бестоковой паузы интенсивность ионизации сильно падает, так как не происходит термоионизации. В коммутационных аппаратах, кроме того, принимаются искусственные меры охлаждения дугового пространства и уменьшения числа заряженных частиц. Эти процессы деионизации приводят к постепенному увеличению электрической прочности промежутка u пр (рис. 3, б ).

Резкое увеличение электрической прочности промежутка после перехода тока через нуль происходит главным образом за счет увеличения прочности околокатодного пространства (в цепях переменного тока 150-250В). Одновременно растет восстанавливающееся напряжение u в. Если в любой момент u пр > u в промежуток не будет пробит, дуга не загорится вновь после перехода тока через нуль. Если в какой-то момент u пр = u в, то происходит повторное зажигание дуги в промежутке.

Рис. 3. :

а – погасание дуги при естественном переходе тока через нуль; б – рост электрической прочности дугового промежутка при переходе тока через нуль

Таким образом, задача гашения дуги сводится к созданию таких условий, чтобы электрическая прочность промежутка между контактами u пр была больше напряжения между ними u в.

Процесс нарастания напряжения между контактами отключаемого аппарата может носить различный характер в зависимости от параметров коммутируемой цепи. Если отключается цепь с преобладанием активного сопротивления, то напряжение восстанавливается по апериодическому закону; если в цепи преобладает индуктивное сопротивление, то возникают колебания, частоты которых зависят от соотношения емкости и индуктивности цепи. Колебательный процесс приводит к значительным скоростям восстановления напряжения, а чем больше скорость du в/dt , тем вероятнее пробой промежутка и повторное зажигание дуги. Для облегчения условий гашения дуги в цепь отключаемого тока вводятся активные сопротивления, тогда характер восстановления напряжения будет апериодическим (рис. 3, б ).

3. Способы гашения дуги в коммутационных аппаратах до 1000 В

В коммутационных аппаратах до 1 кВ широко используются следующие способы гашения дуги:

Удлинение дуги при быстром расхождении контактов.

Чем длиннее дуга, тем большее напряжение необходимо для ее существования. Если напряжение источника питания окажется меньше, то дуга гаснет.

Деление длинной дуги на ряд коротких (рис. 4, а ).
Как показано на рис. 1, напряжение на дуге складывается из катодного U к и анодного U а падений напряжений и напряжения ствола дуги U сд:

U д=U к+U а+U сд=U э+ U сд.

Если длинную дугу, возникшую при размыкании контактов, затянуть в дугогасительную решетку из металлических пластин, то она разделится на N коротких дуг. Каждая короткая дуга будет иметь свое катодное и анодное падения напряжений U э. Дуга гаснет, если:

U n U э,

где U - напряжение сети; U э - сумма катодного и анодного падений напряжения (20-25 В в дуге постоянного тока).

Дугу переменного тока также можно разделить на N коротких дуг. В момент прохождения тока через нуль околокатодное пространство мгновенно приобретает электрическую прочность 150-250 В.

Дуга гаснет, если

Гашение дуги в узких щелях.

Если дуга горит в узкой щели, образованной дугостойким материалом, то благодаря соприкосновению с холодными поверхностями происходит интенсивное охлаждение и диффузия заряженных частиц в окружающую среду. Это приводит к быстрой деионизации и гашению дуги.

Рис. 4.

а – деление длинной дуги на короткие; б – затягивание дуги в узкую щель дугогасительной камеры; в – вращение дуги в магнитном поле; г – гашение дуги в масле: 1 – неподвижный контакт; 2 – ствол дуги; 3 – водородная оболочка; 4 – зона газа; 5 – зона паров масла; 6 – подвижный контакт

Движение дуги в магнитном поле.

Электрическая дуга может рассматриваться как проводник с током. Если дуга находится в магнитном поле, то на нее действует сила, определяемая по правилу левой руки. Если создать магнитное поле, направленное перпендикулярно оси дуги, то она получит поступательное движение и будет затянута внутрь щели дугогасительной камеры (рис. 4, б ).

В радиальном магнитном поле дуга получит вращательное движение (рис. 4, в ). Магнитное поле может быть создано постоянными магнитами, специальными катушками или самим контуром токоведущих частей. Быстрое вращение и перемещение дуги способствует ее охлаждению и деионизации.

Последние два способа гашения дуги (в узких щелях и в магнитном поле) применяются также в отключающих аппаратах напряжением выше 1 кВ.

4. Основные способы гашения дуги в аппаратах выше 1 кВ.

В коммутационных аппаратах свыше 1 кВ применяются способы 2 и 3 описанные в п.п. 1.3. а также широко применяются следующие способы гашения дуги:

1. Гашение дуги в масле .

Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к интенсивному газообразованию и испарению масла (рис. 4, г ). Вокруг дуги образуется газовый пузырь, состоящий в основном из водорода (70-80 %); быстрое разложение масла приводит к повышению давления в пузыре, что способствует ее лучшему охлаждению и деионизации. Водород обладает высокими дугогасящими свойствами. Соприкасаясь непосредственно со стволом дуги, он способствует ее деионизации. Внутри газового пузыря происходит непрерывное движение газа и паров масла. Гашение дуги в масле широко применяется в выключателях.

2. Газовоздушное дутье .

Охлаждение дуги улучшается, если создать направленное движение газов - дутье. Дутье вдоль или поперек дуги (рис. 5) способствует проникновению газовых частиц в ее ствол, интенсивной диффузии и охлаждению дуги. Газ создается при разложении масла дугой (масляные выключатели) или твердых газогенерирующих материалов (автогазовое дутье). Более эффективно дутье холодным неионизированным воздухом, поступающим из специальных баллонов со сжатым воздухом (воздушные выключатели).

3. Многократный разрыв цепи тока .

Отключение большого тока при высоких напряжениях затруднительно. Это объясняется тем, что при больших значениях подводимой энергии и восстанавливающегося напряжения деионизация дугового промежутка усложняется. Поэтому в выключателях высокого напряжения применяют многократный разрыв дуги в каждой фазе (рис. 6). Такие выключатели имеют несколько гасительных устройств, рассчитанных на часть номинального напряжения. Число разрывов на фазу зависит от типа выключателя и его напряжения. В выключателях 500-750 кВ может быть 12 разрывов и более. Чтобы облегчить гашение дуги, восстанавливающееся напряжение должно равномерно распределяться между разрывами. На рис. 6 схематически показан масляный выключатель с двумя разрывами на фазу.

При отключении однофазного КЗ восстанавливающееся напряжение распределится между разрывами следующим образом:

U 1/U 2 = (C 1+C 2)/C 1

где U 1 ,U 2 - напряжения, приложенные к первому и второму разрывам; С 1 – емкость между контактами этих разрывов; C 2 – емкость контактной системы относительно земли.


Рис. 6. Распределение напряжения по разрывам выключателя: а – распределение напряжения по разрывам масляного выключателя; б – емкостные делители напряжения; в – активные делители напряжения.

Так как С 2 значительно больше C 1, то напряжение U 1 > U 2 и, следовательно, гасительные устройства будут работать в неодинаковых условиях. Для выравнивания напряжения параллельно главным контактам выключателя (ГК) включают емкости или активные сопротивления (рис. 16, б , в ). Значения емкостей и активных шунтирующих сопротивлений подбирают так, чтобы напряжение на разрывах распределялось равномерно. В выключателях с шунтирующими сопротивлениями после гашения дуги между ГК сопровождающий ток, ограниченный по значению сопротивлениями, разрывается вспомогательными контактами (ВК).

Шунтирующие сопротивления уменьшают скорость нарастания восстанавливающегося напряжения, что облегчает гашение дуги.

4. Гашение дуги в вакууме .

Высокоразреженный газ (10-6-10-8 Н/см2) обладает электрической прочностью, в десятки раз большей, чем газ при атмосферном давлении. Если контакты размыкаются в вакууме, то сразу же после первого прохождения тока в дуге через нуль прочность промежутка восстанавливается и дуга не загорается вновь.

5. Гашение дуги в газах высокого давления .

Воздух при давлении 2 МПа и более обладает высокой электрической прочностью. Это позволяет создавать достаточно компактные устройства для гашения дуги в атмосфере сжатого воздуха. Еще более эффективно применение высокопрочных газов, например шестифторисгой серы SF6 (элегаз). Элегаз обладает не только большей электрической прочностью, чем воздух и водород, но и лучшими дугогасящими свойствами даже при атмосферном давлении.