Скорость заряда конденсатора калькулятор. Переходные процессы в электрических цепях


Рассмотрим RC-цепь, изображенную на рис. 3.20,а. Пусть на входе этой цепи действует напряжение u1(t).

Рис. 3.20. Дифференцирующие RC-(а) и RL-(б) цепи.

Тогда для этой цепи справедливо соотношение

и с учетом преобразований будем иметь

(3.114)

Если для данного сигнала выбрать постоянную времени цепи τ=RC настолько большим, что вкладом второго члена правой части (3.114) можно пренебречь, то переменная составляющая напряжения uR≈u1. Это значит, что при больших постоянных времени напряжение на сопротивлении R повторяет входное напряжение. Такую цепь применяют тогда, когда необходимо передать изменения сигнала без передачи постоянной составляющей.

При очень малых значениях τ в (3.114) можно пренебречь первым слагаемым. Тогда

(3.115)

т. е. при малых постоянных времени τ RC-цепь (рис. 3.20,а) осуществляет дифференцирование входного сигнала, поэтому такую цепь называют дифференцирующей RC-цепью.

Аналогичными свойствами обладает и RL-цепь (рис. 3.20,б).


Рис. 3.21. Частотные (а) и переходная (б) характеристики дифференцирующих цепей.

Сигналы при прохождении через RС- и RL-цепи называют быстрыми, если

или медленными, если

Отсюда следует, что рассмотренная RC-цепь дифференцирует медленные и пропускает без искажения быстрые сигналы.

Для гармонической э. д. с. аналогичный результат легко получить, вычисляя коэффициент передачи цепи (рис. 3.20,а) как коэффициент передачи делителя напряжения со стационарными сопротивлениямиR и XC=1/ωC:

(3.116)

При малых τ, а именно когда τ<<1/ω, выражение (3.116) преобразуется в

При этом фаза выходного напряжения (аргумент K) равна π/2. Сдвиг гармонического сигнала по фазе на π/2 эквивалентен его дифференцированию. При τ>>1/ω коэффициент передачи K≈1.

В общем случае модуль коэффициента передачи (3.116), или частотная характеристика цепи (рис. 3.20,а):

(3.118)

а аргумент K, или фазовая характеристика этой цепи:

Эти зависимости показаны на рис. 3.21,а.

Такими же характеристиками обладает RL-цепь на рис. 3.20,б с постоянной времени τ=L/R.

Если в качестве выходного сигнала взять единичный скачок напряжения , то интегрированием уравнения (3.114) можно получить переходную характеристику дифференцирующей цепи, или временную зависимость выходного сигнала при единичном скачке напряжения на входе:

График переходной характеристики показан на рис. 3.21,б.

Рис. 3.22. Интегрииующие RC-(а) и LC-(б) цепи.

Рассмотрим RC-цепь, изображенную на рис. 3.22,а. Она описывается уравнением


(3.121)

При малых τ=RC (для «медленных» сигналов) uC≈u1. Для «быстрых» сигналов напряжение u1 интегрируется:

Поэтому RC-цепь, выходное напряжение которого снимается с емкости C называют интегрирующей цепью.

Коэффициент передачи интегрирующей цепи определяется выражением

(3.123)

При ω<<1/τ K≈1.

Частотная и фазовая характеристики описываются соответственно выражениями

(3.124)


Рис. 3.23. Частотные (а) и переходная (б) характеристики интегрирующих цепей.

и изображены на рис. 3.23,а. Переходная характеристика (рис. 3.23,б) получается интегрированием (3.121) при :

При равных постоянных времени такими же свойствами обладает RL-цепь, изображенная на рис. 3.22,б.

Электрическая цепь, в к-рой выходное напряжение U вых (t)(или ток) пропорционально интегралу по времени от входного напряжения U вх (t) (или тока):


Рис. 1. Интегратор на операционном усилителе. <В основе действия И. ц. лежит накопление заряда на конденсаторе с ёмкостью С под действием приложенного тока или накопление магн. потока в катушке с индуктивностью L под действием приложенного напряжения Преимущественно используются И. ц. с конденсатором. <С наиб, точностью указанный принцип реализуется в интеграторе на операц. усилителе (ОУ) (рис. 1). Для идеального ОУ разность напряжений между его входами и входные токи равны нулю, поэтому ток, протекающий через сопротивление R, равен току заряда



конденсатора С, а напряжение в точке их соединения равно нулю. В результате Произведение RС=t, характеризующее скорость заряда конденсатора, наз. постоянной времени И. ц. <Широко используется простейшая RC-И. ц. (рис. 2, а). В этой схеме ток заряда конденсатора определяется разностью входного и выходного напряжений поэтому интегрирование входного напряжения выполняется приближённо и тем точнее, чем меньше выходное напряжение по сравнению с входным. Последнее условие выполняется, если постоянная времени t много больше интервала времени, по к-рому происходит интегрирование. Для правильного интегрирования импульсного входного сигнала необходимо, чтобы t была много больше длительности импульса Т(рис. 3). Аналогичными свойствами обладает RL-И. ц., показанная на рис. 2, б, для к-рой постоянная времени равна L/R.

Рис. 3. 1 - входной прямоугольный импульс; 2 - выходное напряжение интегрирующей цепи при tдT.

И. ц. применяются для преобразования импульсов, модулированных по длительности, в импульсы, модулированные по амплитуде, для удлинения импульсов, получения пилообразного напряжения, выделения низкочастотных составляющих сигнала и т. п. И. ц. на операц. усилителях применяются в устройствах автоматики и аналоговых ЭВМ для реализации операции интегрирования.

53.Переходные процессы. Законы коммутации и их применение.

Перехо́дные проце́ссы - процессы, возникающие в электрических цепях при различных воздействиях, приводящих их из стационарного состояния в новое стационарное состояние, то есть, - при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.

Физическая причина возникновения переходных процессов в цепях - наличие в них катушек индуктивности и конденсаторов, то есть индуктивных и ёмкостных элементов в соответствующих схемах замещения. Объясняется это тем, что энергия магнитного и электрического полей этих элементов не может изменяться скачком при коммутации (процесс замыкания или размыкания выключателей) в цепи.

Переходный процесс в цепи описывается математически дифференциальным уравнением

  • неоднородным (однородным), если схема замещения цепи содержит (не содержит) источники ЭДС и тока,
  • линейным (нелинейным) для линейной (нелинейной) цепи.

Длительность переходного процесса длятся от долей наносекунд до годов. Зависят от конкретной цепи. Например, постоянная времени саморазряда конденсатора с полимерным диэлектриком может достигать тысячелетия. Длительность протекания переходного процесса определяется постоянной времени цепи.

Законы коммутации относятся к энергоемким (реактивным) элементам, т. е. к емкости и индуктивности. Они гласят: напряжение на емкости и ток в индуктивности при конечных по величине воздействиях являются непрерывными функциями времени, т. е. не могут изменяться скачком.

Математически эта формулировка может быть записана следующим образом

Для емкости;

Для индуктивности.

Законы коммутации являются следствием определений элементов емкости и индуктивности.

Физически закон коммутации для индуктивности объясняется противодействием ЭДС самоиндукции изменению тока, а закон коммутации для емкости – противодействием напряженности электрического поля конденсатора изменению внешнего напряжения.

54.Вихревые токи, их проявления и использование.

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) - вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного поля.

Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго (1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольце.

Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.

Тепловое действие токов Фуко используется в индукционных печах - в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нём возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих сердечников сплошными.

Вихретоковый контроль - один из методов неразрушающего контроля изделий из токопроводящих материалов.

55. Трансформатор, основные свойства и виды конструкции.

В электронных схемах часто используются RC-цепочки для обеспечения временных задержек или удлинения импульсных сигналов. Самые простые цепочки состоят всего лишь из резистора и конденсатора (отсюда и происхождение термина RC-цепочка).

Для логического завершения этой схемы нужно подключить резистор и конденсатор к какому-либо активному электронному компоненту, как на рис. 17.2: например, к логическому элементу или транзистору.

Принцип работы RC-цепочки состоит в том, что заряженный конденсатор разряжается через резистор не мгновенно, а на протяжении некоторого интервала времени. Чем больше сопротивление резистора и/или конденсатора, тем дольше будет разряжаться емкость. Разработчики схем очень часто применяют RC-цепочки для создания простых таймеров и осцилляторов или изменения формы сигналов.

Каким же образом можно рассчитать постоянную времени RC-цепочки? Поскольку эта схема состоит из резистора и конденсатора, в уравнении используются значения сопротивления и емкости. Типичные конденсаторы имеют емкость порядка микрофарад и даже меньше, а системными единицами являются фарады, поэтому формула оперирует дробными числами.

В этом уравнении литера Т служит для обозначения времени в секундах, R — сопротивления в омах, и С — емкости в фарадах.

Пусть, к примеру, имеется резистор 2000 Ом, подключенный к конденсатору 1 мкФ. Постоянная времени этой цепочки будет равна 0,002 с, или 2 мс.

Для того чтобы на первых порах облегчить вам перевод сверхмалых единиц емкостей в фарады, мы составили табл. 17.2.

Таблица 17.2. Соотношения закона Ома

Расчёты частоты и длины волны

Частота сигнала является величиной, обратно пропорциональной его длине волны, как будет видно из формул чуть ниже. Эти формулы особенно полезны при работе с радиоэлектроникой, к примеру, для оценки длины куска провода, который планируется использовать в качестве антенны. Во всех следующих формулах длина волны выражается в метрах, а частота — в килогерцах.

Лабораторная работа № 23.

RC - цепи.

Цель: Изучение RC - цепей.

Оборудование: Система моделирования Multisim .

ВВЕДЕНИЕ

Напряжение (условное обозначениеU, иногда Е). Напряжение между двумя точками – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т.е. первая точка имеет более отрицательный потенциал по сравнению со второй). Напряжение называют такжеразностью потенциалов илиэлектродвижущей силой (э.д.с.). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В),киловольтах (1 кВ = 10 3 В), милливольтах (1 мВ = 10 -3 В) или микровольтах (1 мкВ = 10 -6 В).

Ток (условное обозначениеI). Ток – это скорость перемещения электрического заряда. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10 -3 А), микроамперах (1 мкА = 10 -6 А), наноамперах (1 нА=10 -9 А). Ток величиной 1А создается перемещением заряда в 1 кулон за время, равное 1 сек. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-нибудь элемент схемы.

Законы Кирхгофа.

    Сумма токов, втекающих в точку, равна сумме токов вытекающих из нее (сохранение заряда). В электронике эту точку схемы называют узлом . Из этого закона вытекает следствие: в последовательной цепи ток во всех точках одинаков.

    При параллельном соединении элементов (рис.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В.

Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю.

Пассивные элементы электроники – это элементы способные только ослабить сигнал (резистор, конденсатор, индуктивность).

Резистор. Падение напряжения на участке цепи прямо пропорционально току, протекающему через цепь и обратно пропорционально силе тока:

(закон Ома). Объекты, для которых выполняется закон Ома, называют резисторами. Однако, закон Ома выполняется не для всех элементов. Например, ток, протекающий через неоновую лампу, представляет собой нелинейную функцию от приложенного напряжения (он сохраняет нулевое значение до критического значения напряжения, а в критической тоске резко возрастает). То же самое можно сказать и о целой группе других элементов – диодах, транзисторах, лампах.

Резисторы изготавливают из проводящего материала (графита, тонкой металлической или графитовой пленки или провода, обладающего невысокой проводимостью). Сопротивление Rизмеряется в Омах, если напряжениеUвыражено в вольтах, а токIв амперах.

Параметры резисторов :

    номинальная величина сопротивления R(Ом, кОм, МОм, мОм);

    допуск + R(в %): для обычных резисторов -+ 5%,+ 10%, для прецинзионных -+ 1%,+ 0,01%;

    номинальная мощность – это та мощность, которую резистор способен длительное время рассеивать в пространство без изменения своих свойств (типовые мощности: 0,0625Вт, 0,125Вт).

Последовательное и параллельное соединение резисторов. Из определения сопротивления следуют следующие выводы:



Рис.2. Соединения резисторов.

Маркировка резисторов. Отечественная промышленность для маркировки резисторов использует надписи: Е – Ом, К- КОм, М – МОм. Например, надпись на резисторе 1К8 означает 1,8КОМ, К47 – 0,47КОм, 5М6 – 5,6МОм, 4Е7 – 4,7Ом.

Зарубежная промышленность пользуется цветной маркировкой. На резистор как правило наносится 5 цветных колец. В таблице № 1 представлена цветовая маркировка резисторов.

Табл.№1. Цветовая маркировка резисторов.

Сопротивление

(5-я полоса)

(1-я полоса)

(2-я полоса)

(3-я полоса)

Множитель

(4-я полоса)

серебристый

золотистый

коричневый

оранжевый

фиолетовый

Номинальное сопротивление резистора выбирается не произвольно, а из стандартного ряда (таблица 2).

Таблица №2.

Обозначение рядов

Обозначение рядов

Конденсатор это устройство, имеющее два вывода и обладающее свойством, согласно которому заряд накопленный этим устройством прямо- пропорционален напряжению между выводами, а коэффициент пропорциональности называют емкостью конденсатора (Q=CU).

Конденсатор, имеющий емкость С фарад, к которому приложено напряжение Uвольт, накапливает зарядQкулон на одной пластине и –Q– на другой.

Продифференцировав выражение для Q, получим

. Из этого выражения следует вывод, что конденсатор – это более сложный элемент, чем резистор; ток пропорционален не просто напряжению: а скорости изменения напряжения. Если напряжение на конденсаторе, имеющем емкость 1Ф, изменится на 1В за 1сек, то получим ток 1А. И наоборот, протекание тока 1А через конденсатор емкостью 1Ф вызывает изменение напряжения на 1В за 1сек. Емкость, равная 1Ф, очень велика, и поэтому чаще имеют дело с микрофарадами (мкФ) или пикофарадами (пФ).

Основные параметры конденсатора:

    номинальная емкость;

    максимальное напряжение – это напряжение, которое длительное время может быть приложено к конденсатору и не вызывать каких-либо изменений его свойств.

    отклонения конденсатора + С (допуск)

Последовательное и параллельное соединение конденсаторов. Емкость несколько параллельно соединенных конденсаторов равна сумме его емкостей. Нетрудно в этом убедиться: приложим напряжение к параллельному соединению, тогда

CU = Q =Q1 +Q2 +Q3+ … = C1U + C2U +C3U +… = (C1 +C2 +C3 + …)Uили С = С1 +С2 +С3 +… .

Для последовательного соединения конденсаторов имеем такое же выражение, как для параллельного соединения резисторов:

.

В частном случае для двух конденсаторов:

.

Номинальное значение, так же как и резистора выбирается из стандартного ряда (таблица 3). Стандартная величина емкости определяется по формуле С =a* 10 n ,n=0,1,2,3,… Значения коэффициентовaприведены в таблице 3.

Таблица №3.

Обозначение рядов

Обозначение рядов

RC - цепи: изменения во времени напряжения и тока. Для анализа цепей переменного тока (или в общем случае схем, работающих с изменяющимися напряжениями и токами) можно использовать характеристики двух типов. Во-первых, можно рассматривать изменения напряженияUи токаIво времени, а во-вторых, - изменение амплитуды при изменении частоты сигнала. И те, и другие характеристики имеют свои преимущества, и в каждом практическом случае приходится выбирать наиболее подходящие.

Чтобы ответить на вопрос, какими свойствами обладают схемы, в состав которых входят конденсаторы, рассмотрим простейшую RC- цепь (рис.3).


Рис.3. RC- цепь. Рис.4. Сигнал разрядаRC- цепи.

Воспользуемся полученным ранее выражением для емкости: . Это выражение представляет собой дифференциальное уравнение, решение которого имеет вид

e - t / RC . отсюда следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на рис.4.

Постоянная времени. ПроизведениеRCназывают постоянной времени цепи. ЕслиRизмерять в омах,C– в фарадах, то произведениеRCбудет измеряться в секундах. Для конденсатора емкость 1мкФ, подключенного к резистору сопротивлением 1кОм, постоянная времени составляет 1мс. Если конденсатор был предварительно заряжен и напряжение на нем составляет 1В, то при подключении резистора в цепи появится ток, равный 1мА.


Рис.5. RC- цепь. Рис.6.

На рис.5 показана несколько иная схема. В момент времени t=0 схема подключается к батарее. Уравнение, описывающее работу такой схемы, выглядит следующим образом: I = C (dU / dt ) =(U вх - U вых)/ R и имеет решениеU вых = U вх + Ae - t / RC . Постоянная величинаА определяется из начальных условий (рис.6):U =0 приt =0 , откудаA =- U вх иU вых = U вх (1 – e - t / RC ).

Установление равновесия. При условииt>>RCнапряжение достигает значенияUвх (правило пяти: за время равное пяти постоянным времени, конденсатор разряжается или заряжается на 99%). Если затем изменить входное напряжениеUвх (сделать его, например, равным нулю), то напряжение на конденсатореUбудет убывать, стремясь к новому значению по экспоненциальному законуe - t / RC . Например, если на вход подать прямоугольный сигналUвх, то сигнал на выходеUвых будет иметь форму, показанную на рис.7.


(верхние сигналы), при условии, что на него через

резистор подается прямоугольный импульс.

Здесь возникает вопрос: каков закон изменения для произвольного U вх(t )? Для того чтобы ответить на него, нужно решить неоднородное дифференциальное уравнение. В результате получим:


U вх e - (t- ) / RC dt.

Согласно полученному выражению, RC- цепь усредняет входное напряжение с коэффициентом пропорциональностиe - t / RC , гдеt = - t .

Дифференцирующие цепи. Рассмотрим схему, изображенную на рис.8. Напряжение на конденсаторе С равноU вх – U вых, поэтомуI = Cd (U вх - U вых)/ dt = U вых/ R .

Рис.8. Дифференцирующая RC- цепь.

Если резистор и конденсатор выбрать так, чтобы сопротивление Rи емкостьCбыли достаточно малыми и выполнялось условиеdU вых/ dt << dU вх/ dt , то

C (dU вх/ dt ) = U вых/ R илиU вых(t ) = RC [ dU вх(t )/ dt ].

Таким образом, мы получили, что выходное напряжение пропорционально скорости изменения входного сигнала.

Для того, чтобы выполнялось условие dU вых/ dt << dU вх/ dt , произведениеRC должно быть небольшим, но при этом сопротивлениеR не должно быть слишком малым, чтобы не «нагружать» выход (при скачке напряжения на входе изменение напряжения на конденсаторе равно нулю иR представляет собой нагрузку со стороны выхода схемы). Если на вход схемы подать прямоугольный сигнал, то сигнал на выходе будет иметь вид, представленный на рис.9.

Рис.9. Входной и выходной сигналы

дифференцирующей RC- цепи.

Дифференцирующие цепи удобно использовать для выделения переднего изаднего фронтов импульсных сигналов. В цифровых схемах можно иногда встретить цепи, подобные той, которая показана на рис.10.

Рис.10. Выделение переднего фронта импульса.

Дифференцирующая RC- цепь генерирует импульсы в виде коротких пиков в моменты переключения входного сигнала, а выходной буферный усилитель преобразует эти импульсы в короткие прямоугольные импульсы. В реальных схемах отрицательный пик бывает небольшим благодаря встроенному в буфер диоду.

Интегрирующие цепи. Рассмотрим схему, изображенную на рис.11. Напряжение на резистореRравноUвх –Uвых, следовательноI = C (dU / dt ) =(U вх - U вых)/ R . Если обеспечить выполнение условияU вых << U вх за счет большего значения произведенияRC , то получимС(dU вых/ dt )U вх/ R илиU вых(t ) = U вх(t ) dt + const .

Рис.11. Интегрирующая RC- цепь.

Мы получили, что схема интегрирует входной сигнал во времени. На рис.12 показано, как с помощью RC- цепи можно получить задержанный импульс. В виде треугольников изображены КМОП – буферные усилители. Они дают более высокий уровень на выходе (более половины величины напряжения питания постоянного тока) и наоборот. Первый буферный усилитель воспроизводит входной сигнал и обеспечивает небольшое выходное сопротивление, предотвращая тем самым воздействие на источник сигналаRC- цепи. Согласно характеристикеRC- цепи, выходной сигнал для нее задерживается относительно входного, поэтому выходной буферный усилитель переключается на 10 мкс позже скачка напряжения на входе (напряжение на выходеRC- цепи достигает 50% своего максимального значения через 0,7RC). Подобную схему используют для того, чтобы задержать импульс на время, в течении которого может произойти какое-либо событие.

Рис.12. Использование RC- цепи для формирования

задержанного цифрового сигнала.

Отметим, что условие Uвых <

Интегрирующие цепи находят широкое применение в аналоговой технике. Их используют в управляющих системах, схемах с обратной связью, при аналогово-цифровом преобразовании и генерации колебаний.

Практическая часть

В системе моделирования MultiSimВам предлагается проделать следующие задания:

    Разработать схему дифференцирующей RC- цепи с постоянной времени= 0,1с и сопротивлениемR= 100 Ом. Получите временные диаграммы и объясните принцип работы.

    Разработать схему интегрирующей RC- цепи с постоянной времени= 0,01 с. Получите временные диаграммы и объясните принцип работы.

    Соберите схему аналогичную той, что изображена на рис.10, только с тем отличием, что блок питания положительным полюсом подключается к резистору. Получите временные диаграммы и объясните наблюдаемую картину.

    Соберите схему изображенную на рис.12, с сопротивлением R= 100кОм и емкостью С =1000пФ. Получите временные диаграммы и определите время задержки.

Контрольные вопросы

    Напряжение.

    Резисторы.

    Конденсаторы.

    Какие существуют характеристики для анализа цепей переменного тока?

    Понятие «постоянной времени» и условие установления равновесия.

    Дифференцирующие цепи: схема, принцип работы, применение.

    Интегрирующие цепи: схема, принцип работы, применение.

    Генераторы пилообразного сигнала.

Список литературы

    Токхейм Р. Основы цифровой электроники. М.:Мир, 1988, 392с.

    Потемкин И.С. Функциональные узлы цифровой автоматики. М.:Энергоатомиздат, 1988, 320с.

    Хоровиц П., Хилл У. Искусство схемотехники. М.:Мир, 1998.

    Янсен Й. Курс цифровой электроники. Т.1, Т.2, М.:Мир, 1987.

    Тули М. Справочное руководство по цифровой электронике. М.:Энергоатомиздат, 1990, 176с.

    Мальцева Л.А., Фромберг Э.М., Ямпольский В.С. Основы цифровой техники. М.:Радио и связь, 1987, 128с.

    Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. Л.:Энергоатомиздат, 1986, 280с.

    Шило В.Л. Популярные цифровые микросхемы. Справочник. М.: Металлургия, 1988, 352с.

    Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.:Высшая школа, 1991, 526с.

    Угрюмов Е. Цифровая схемотехника. СПб.:БХВ-Петербург, 2001, 528с.

    Новиков Ю.В. Основы цифровой схемотехники. М.:Мир, 2001, 379с.

    Партала О.Н. Цифровая электроника. СП

Разряд предварительно заряженного конденсатора через активное сопротивление (через резистор) является простейшим переходным процессом.

Пусть конденсатор ёмкостью С заряжен до напряжения U . В момент t =0 замыкается ключ К и конденсатор начинает разряжаться через активное сопротивление R . Так как здесь внешнего воздействия нет, то в цепи будет только свободный процесс.

Выбрав направление обхода, запишем для этой цепи второе уравнение Кирхгофа:

u R u C =0,

iR u C =0. (1)

А так как для конденсатора ток i здесь является разрядным , то

, и тогда

, (2)

или

,

где

постоянная времени RC -цепочки.

Общее решение этого однородного уравнения имеет вид (проинтегрировать самостоятельно; однако, решение уравнения такого типа надо знать ):


,

где А – коэффициент, определяемый начальным условием , т.е.

− напряжением на конденсаторев первый момент после замыкания ключа К . Так как, по условию, до замыкания напряжение

, а напряжение на конденсаторе скачком измениться не может (это привело бы к тому, что

, тогда как в уравнении (2)и С – конечно), то

(это второе правило коммутации).

Это даёт: А =U , и, следовательно,


. (3)

Отсюда видно, что τ – это время, за которое напряжение на конденсаторе убывает в е раз:


2,7.

Реально время переходного процесса оценивается примерно в 3τ, когда напряжение уменьшается в е 3 = 20 раз, или когда до установившегося значения осталось лишь 1/20 = 5 % от исходного напряжения U .

Пример . Пусть С =1 мкФ, R =1 кОм. Тогда время переходного процесса Δt перх. =3τ=3RC =3 мс.

Теперь легко получить закон убывания тока в цепи:


.

Видно, что он точно такой же, как и закон убывания напряжения.

3.2. Включение постоянного напряжения

в последовательную цепь RC

Рассмотрим теперь процесс заряда конденсатора через активное сопротивление R от генератора с постоянным напряжением U .

Пусть в момент t =0 замыкается ключ К . Тогда второе уравнение Кирхгофа для выбранного направления обхода контура будет таким:


,

или, так как i = C (du C / dt ),


, (4)

где

постоянная времени RC -цепочки.

Общее решение этого неоднородного уравнения равно сумме его частного решения и общего решения соответствующего однородного. Частное решение легко угадывается: и С частн. =U (оно проверяется простой подстановкой). Тогда


.

Коэффициент А определяется из начального условия: и С (+0)=и С (−0)=0. Это даёт: А =−U ; и тогда


.

Ток заряда


.

3.3. Включение постоянного напряжения

в последовательную цепь RL

Процессы при коммутациях в цепи RL описываются такими же дифференциальными уравнениями, как и (2) или (4), поэтому подробнее остановимся лишь на некоторых специфических особенностях.

Второе уравнение Кирхгофа:


, или:

.

Или:

, (5)

где

постоянная времени цепи RL .

Общее решение неоднородного уравнения (5): i = i однор. +i частн. =

.

Начальное условие:i (+0) = i (−0)=0 (ток через индуктивность скачком измениться не может, так как это противоречило бы уравнению (5)). Отсюда А =−U /R , и тогда


. (6)

Замечание 1 . При R =0 (подключение напряжения U к идеальной индуктивности) уравнение (5) принимает вид:

, откуда

, т.е. ток в катушке линейно и бесконечно растёт (наклонный пунктир на рисунке). Это следует и из (6) при разложении экспоненты в ряд Тейлора по малому параметру (t /τ):

.

Замечание 2 . Если скачки тока через индуктивности и скачки напряжения на ёмкости запрещены, то скачки напряжения на катушке и тока на конденсаторе не противоречат уравнениям Кирхгофа.

Расчеты напряжения и тока в RC и L/R цепях

Существует простой способ расчета любой величины реактивной цепи постоянного тока в любой момент времени. Первый шаг этого способа заключается в определении начальных и конечных значений тех величин, против изменения которых выступает конденсатор или катушка индуктивности (которые они пытаются держать на постоянном уровне, независимо от реактивной составляющей). Для конденсаторов такой величиной будет напряжение, а для катушек индуктивности - ток. Начальное значение - это такое значение, которое было до момента замыкания (размыкания) контактов выключателя, и которое реактивный компонент пытается удерживать на постоянном уровне после замыкания (размыкания) контактов. Конечное значение - это значение, которое устанавливается по истечении неопределенно длительного периода времени. Оно может быть определено путем анализа емкостной цепи, когда конденсатор выступает в качестве обрыва цепи, и индуктивной цепи, когда катушка индуктивности выступает в роли короткозамкнутой перемычки, потому что именно так ведут себя эти элементы при достижении "полной зарядки" через неопределенно длительный промежуток времени.

Следующим шагом является вычисление постоянной времени цепи. Постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. В последовательной RC- цепи , постоянная времени равна общему сопротивлению (в Омах) умноженному на общую емкость (в Фарадах) . В последовательной L/R -цепи она равно общей индуктивности (в Генри) деленной на общее сопротивление (в Омах) . В обоих случаях постоянная времени выражается в секундах и обозначается греческой буквой "тау" (τ):

Увеличение и уменьшение значений тока и напряжения в переходных процессах, как уже отмечалось ранее , носит асимптотический характер . А это значит, что они начинают быстро изменяться в начальный момент времени, и практически не изменяются в последующем. На графике данные изменения отображаются в виде экспоненциальных кривых.

Как уже было сказано выше, постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. Каждая последующая постоянная времени приближает эти величины к конечному значению еще примерно на 63%. Математическая формула для определения точного процента довольно проста:

Буква e здесь - иррациональная константа, равная приблизительно 2,718281 8 . За время τ, процент изменения от начального до конечного значения составит:

За время 2τ, процент изменения от начального до конечного значения составит:

За время 10τ, процент изменения составит:

Для расчета напряжений и токов в реактивных цепях эту формулу можно сделать более универсальной:



Давайте проанализируем повышение напряжения в RC-цепи, показанной в первой статье этого раздела :



Обратите внимание, мы выбрали для анализа напряжение, так как именно эту величину конденсатор пытается поддерживать на постоянном уровне. Зная сопротивление резистора (10 кОм) и емкость конденсатора (100 мкФ) мы можем рассчитать постоянную времени данной цепи:

Так как в момент замыкания контактов выключателя напряжение на конденсаторе равно 0 вольт, то именно это значение мы и будем использовать в качестве начального. Конечным значением конечно же будет напряжение источника питания (15 Вольт). С учетом всех этих цифр наше уравнение примет следующий вид:



Таким образом, через 7,25 секунд (к примеру) после подачи напряжения в схему через замкнутые контакты выключателя , напряжение на конденсаторе увеличится на :

Из этих расчетов можно сделать следующий вывод: если начальное напряжение конденсатора составляло 0 вольт, то через 7,25 секунд после замыкания контактов выключателя оно будет равно 14,989 вольт.

При помощи этой же формулы можно рассчитать и ток через конденсатор. Поскольку разряженный конденсатор первоначально действует как короткозамкнутая перемычка, ток через него будет максимальным. Рассчитать этот ток можно поделив напряжение источника питания (15 вольт) на единственное сопротивление (10 кОм):

Известно также, что конечный ток будет равен нулю , так как конденсатор в конечном итоге ведет себя как разомкнутая цепь. Теперь мы можем подставить эти значения в нашу универсальную формулу для расчета величины тока через 7,25 секунд после замыкания контактов выключателя:

Обратите внимание, что полученное значение является отрицательным , а не положительным! Это говорит об уменьшении тока с течением времени . Так как начальное значение тока составляет 1,5 мА, то его уменьшение на 1,4989 мА за 7,25 секунд даст в конечном итоге 0,001065 мА (1,065 мкА ).

Это же значение можно получить при помощи закона Ома, отняв напряжение конденсатора (14,989 вольт) от напряжения источника питания (15 вольт) и поделив полученное значение на сопротивление (10кОм):

Рассмотренная выше универсальная формула хорошо подходит и для анализа L/R цепи. Давайте применим ее к цепи, рассмотренной во второй статье данного раздела :


При индуктивности 1 Генри и последовательном сопротивлении 1 Ом постоянная времени будет равна 1 секунде:

Поскольку катушка индуктивности в данной цепи выступает против изменения тока, именно эту величину мы и выберем для анализа. Начальным значением здесь выступит величина тока через катушку индуктивности в момент замыкания контактов выключателя. Она будет равна нулю. В качестве конечного значения мы возьмем величину тока, которая установится в катушке индуктивности по прошествии неопределенно длительного промежутка времени (максимальная величина). Рассчитать ее можно поделив напряжение источника питания на последовательное сопротивление: 15 В/1 Ом = 15 А.

Если мы хотим определить величину тока через 3,5 секунды после замыкания контактов выключателя, то формула примет следующий вид:

Учитывая тот факт, что начальный ток через катушку индуктивности равнялся нулю, через 3,5 секунды с момента замыкания контактов выключателя его величина составит 14,547 ампер.

Расчет напряжений в индуктивной цепи осуществляется при помощи закона Ома и начинается с резисторов, а заканчивается катушкой индуктивности. При наличии в нашем примере только одного резистора (имеющего значение 1 Ом ), произвести эти расчеты довольно легко :

Отняв полученное значение от напряжения источника питания (15 В), мы получим напряжение, которое будет на катушке индуктивности через 3,5 секунды после замыкания контактов выключателя: