Регулировка теплового пункта. Индивидуальный тепловой пункт


*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Собственники жилья знают, какую долю в коммунальных платежах составляют затраты на обеспечение тепла. Отопление, горячая вода - то, от чего зависит комфортное существование, особенно в холодное время года. Однако не все знают, что эти расходы могут быть существенно снижены, для чего необходимо перейти на использование индивидуальных тепловых пунктов (ИТП).

Недостатки централизованного отопления

Традиционная схема централизованного отопления работает так: от центральной котельной по магистралям теплоноситель поступает на централизованный теплопункт, где и распределяется по внутриквартальным трубопроводам потребителям (зданиям и домам). Управление температурой и давлением теплоносителя осуществляется на централизованно, в центральной котельной, едиными значениями для всех зданий.

При этом возможны потери тепла на трассе, когда одинаковое количество теплоносителя передается в здания, расположенные на разном расстоянии от котельной. Кроме того, архитектура микрорайона - это как правило здания различной этажности и конструкции. Поэтому одинаковые параметры теплоносителя на выходе из котельной не означают одинаковые входные параметры теплоносителя в каждом здании.

Использование ИТП стало возможным из-за изменения схемы регулирования теплоснабжения. Принцип ИТП основан на том, что регулирование тепла производится прямо на входе теплоносителя в здание, исключительно и индивидуально для него. Для этого отопительное оборудование располагают в автоматизированном индивидуальном теплопункте - в подвале здания, на первом этаже или в отдельно стоящем сооружении.

Принцип работы ИТП

Индивидуальный тепловой пункт - это совокупность оборудования, с помощью которого осуществляется учет и распределение тепловой энергии и теплоносителя в системе отопления конкретного потребителя (здания). ИТП подключен к распределительным магистралям городской сети теплоэнергии и водопровода.

Работа ИТП построена по принципу автономности: в зависимости от наружной температуры аппаратура изменяет температуру теплоносителя в соответствие с расчетными значениями и подает его в отопительную систему дома. Потребитель больше не зависит от протяженности магистралей и внутриквартальных трубопроводов. Но удержание тепла полностью зависит от потребителя и зависит от технического состояния здания и методов по сбережению тепла.

Индивидуальные теплопункты обладают следующими преимуществами:

  • независимо от протяженности теплотрасс можно обеспечить одинаковые параметры отопления у всех потребителей,
  • возможность обеспечить индивидуальный режим работы (например, для медицинских учреждений),
  • отсутствует проблема потерь тепла на теплотрассе, вместо нее потери тепла зависят от обеспечения утепления дома домовладельцем.

В состав ИТП входят системы горячего и холодного водоснабжения, а также отопления и вентиляции. Конструктивно ИТП - это комплекс устройств: коллекторы, трубопроводы, насосы, различные теплообменники, регуляторы и датчики. Это сложная система, требующая настройки, обязательной профилактики и обслуживания, при этом техническое состояние ИТП напрямую влияет на расход тепла. На ИТП контролируются такие параметры теплоносителя как давление, температура и расход. Этими параметрами может управлять диспетчер, кроме того, данные передаются в диспетчерскую службу теплосети для записи и мониторинга.

Кроме непосредственно распределения тепла, ИТП помогает учесть и оптимизировать затраты на потребление. Комфортные условия при экономном расходовании энергоресурсов - вот основное преимущество использования ИТП.

С. Дейнеко

Индивидуальный тепловой пункт - важнейшая составляющая систем теплоснабжения зданий. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Поэтому тепловым пунктам уделяется большое внимание в ходе термомодернизаций зданий, масштабные проекты которых в ближайшем будущем планируется воплотить в жизнь в различных регионах Украины

Индивидуальный тепловой пункт (ИТП) — комплекс устройств, расположенный в обособленном помещении (как правило, в подвальном помещении), состоящий из элементов, обеспечивающих присоединение системы отопления и горячего водоснабжения к централизованной тепловой сети. По подающему трубопроводу осуществляется подача теплоносителя в здание. С помощью второго обратного трубопровода в котельную попадает уже охлажденный теплоноситель из системы.

Температурный график работы тепловой сети определяет то, в каком режиме тепловой пункт будет работать в дальнейшем и какое оборудование необходимо в нем устанавливать. Различают несколько температурных графиков работы тепловой сети:

  • 150/70°С;
  • 130/70°С;
  • 110/70°С;
  • 95 (90)/70°С.

Если температура теплоносителя не превышает 95°С, то его остается только распределить по всей отопительной системе. В этом случае возможно применять только коллектор с балансировочными клапанами для гидравлической увязки циркуляционных колец. Если же температура теплоносителя превышает 95°С, то такой теплоноситель нельзя напрямую использовать в системе отопления без его температурной регулировки. Именно в этом и заключается важная функция теплового пункта. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

В тепловых пунктах старого образца (рис. 1, 2) в качестве регулирующего устройства применялся элеваторный узел. Это позволяло существенно снизить стоимость оборудования, однако с помощью такого ТП было невозможно осуществлять точную регулировку температуры теплоносителя, особенно при переходных режимах работы системы. Элеваторный узел обеспечивал только «качественную» регулировку теплоносителя, когда температура в системе отопления изменяется в зависимости от температуры теплоносителя, приходящего от централизованной тепловой сети. Это приводило к тому, что «регулировка» температуры воздуха в помещениях производилась потребителями при помощи открытого окна и с огромными тепловыми затратами, уходящими в никуда.

Рис. 1.
1 - подающий трубопровод; 2 - обратный трубопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления

Поэтому минимальные изначальные капиталовложения выливались в финансовые потери в долгосрочной перспективе. Особенно низкая эффективность работы элеваторных узлов проявилась с ростом цен на тепловую энергию, а также с невозможностью работы централизованной тепловой сети по температурному или гидравлическому графику, на который были рассчитаны установленные ранее элеваторные узлы.


Рис. 2. Элеваторный узел «советской» эпохи

Принцип работы элеватора заключается в том, чтобы смешивать теплоноситель из централизованной тепловой сети и воду из обратного трубопровода системы отопления до температуры, соответствующей нормативной для данной системы. Это происходит за счет принципа эжекции при использовании в конструкции элеватора сопла определенного диаметра (рис. 3). После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Элеватор совмещает одновременно два устройства: циркуляционный насос и смесительное устройство. На эффективность смешения и циркуляции в системе отопления не влияют колебания теплового режима в тепловых сетях. Вся регулировка заключается в правильном подборе диаметра сопла и обеспечения необходимого коэффициента смешения (нормативный коэффициент 2,2). Для работы элеваторного узла нет необходимости подводить электрический ток.

Рис. 3. Принципиальная схема конструкции элеваторного узла

Однако имеются многочисленные недостатки, которые сводят на нет всю простоту и неприхотливость обслуживания данного устройства. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Так, для нормального смешения, перепад давлений в подающем и обратном трубопроводах необходимо поддерживать в пределах 0,8 - 2 бар; температура на выходе из элеватора не поддается регулировке и напрямую зависит только от изменения температуры тепловой сети. В этом случае, если температура теплоносителя, поступающего из котельной, не соответствует температурному графику, то и температура на выходе из элеватора будет ниже необходимой, что напрямую повлияет на внутреннюю температуру воздуха в помещениях здания.

Подобные устройства получили широкое применение во многих типах зданий, подключенных к централизованной тепловой сети. Однако в настоящее время они не соответствуют требованиям по энергосбережению, в связи с чем подлежат замене на современные индивидуальные тепловые пункты. Их стоимость значительно выше и для работы обязательно требуется электропитание. Но, в то же время, эти устройства более экономны - позволяют снизить энергопотребление на 30 - 50%, что с учетом роста цен на теплоноситель позволит уменьшить срок окупаемости до 5 - 7 лет, а срок службы ИТП напрямую зависит от качества используемых элементов управления, материалов и уровня подготовки технического персонала при его обслуживании.

Современные ИТП

Энергосбережение достигается, в частности, за счет регулирования температуры теплоносителя с учетом поправки на изменение температуры наружного воздуха. Для этих целей в каждом тепловом пункте применяют комплекс оборудования (рис. 4) для обеспечения необходимой циркуляции в системе отопления (циркуляционные насосы) и регулирования температуры теплоносителя (регулирующие клапаны с электрическими приводами, контроллеры с датчиками температуры).

Рис. 4. Принципиальная схема индивидуального теплового пункта и использованием контроллера , регулирующего клапана и циркуляционного насоса

Большинство тепловых пунктов имеет в своем составе также теплообменник для подключения к внутренней системе горячего водоснабжения (ГВС) с циркуляционным насосом. Набор оборудования зависит от конкретных задач и исходных данных. Именно поэтому, из-за различных возможных вариантов конструкции, а также своей компактности и транспортабельности, современные ИТП получили название модульных (рис. 5).


Рис. 5. Современный модульный индивидуальный тепловой пункт в сборе

Рассмотрим использование ИТП в зависимых и независимых схемах подключения системы отопления к централизованной тепловой сети.

В ИТП с зависимым присоединением системы отопления к внешним тепловым сетям циркуляция теплоносителя в отопительном контуре поддерживается циркуляционным насосом. Управление насосом осуществляется в автоматическом режиме от контроллера или от соответствующего блока управления. Автоматическое поддержание необходимого температурного графика в отопительном контуре также осуществляется электронным регулятором. Контролер воздействует на регулирующий клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»). Между подающим и обратным трубопроводами установлена смесительная перемычка с обратным клапаном, за счет которой осуществляется подмес в подающий трубопровод из обратной линии теплоносителя, с более низкими температурными параметрами (рис. 6).

Рис. 6. Принципиальная схема модульного теплового пункта, подключенного по зависимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами

В данной схеме работа системы отопления зависит от давлений в центральной тепловой сети. Поэтому во многих случаях потребуется установка регуляторов перепада давления, а, в случае необходимости, и регуляторов давления «после себя» или «до себя» на подающем или на обратном трубопроводах.

В независимой системе для присоединения к внешнему источнику тепла используется теплообменник (рис. 7). Циркуляция теплоносителя в системе отопления осуществляется циркуляционным насосом. Управление насосом производится в автоматическом режиме контролером или соответствующим блоком управления. Автоматическое поддержание необходимого температурного графика в нагреваемом контуре также осуществляется электронным регулятором. Контроллер воздействует на регулируемый клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»).


Рис. 7. Принципиальная схема модульного теплового пункта, подключенного по независимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами; 13 - теплообменник системы отопления

Достоинством данной схемы является то, что отопительный контур независим от гидравлических режимов централизованной тепловой сети. Также система отопления не страдает от несоответствия качества входящего теплоносителя, поступающего из центральной тепловой сети (наличия продуктов коррозии, грязи, песка и т.д.), а также перепадов давления в ней. В то же время стоимость капитальных вложений при применении независимой схемы больше - по причине необходимости установки и последующего обслуживания теплообменника.

Как правило, в современных системах применяются разборные пластинчатые теплообменники (рис. 8), которые достаточно просты в обслуживании и ремонтопригодны: при потере герметичности или выходе из строя одной секции, теплообменник возможно разобрать, а секцию заменить. Также, при необходимости, можно повысить мощность путем увеличения количества пластин теплообменника. Кроме того, в независимых системах применяют паяные неразборные теплообменники.

Рис. 8. Теплообменники для независимых систем подключения ИТП

Согласно ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети», в общем случае предписано подсоединение систем отопления по зависимой схеме. Независимая схема предписана для жилых зданий с 12 и более этажами и других потребителей, если это обусловлено гидравлическим режимом работы системы или техническим заданием заказчика.

ГВС от теплового пункта

Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 9). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода, из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей из подающего трубопровода тепловой сети.

Рис. 9. Схема с зависимым присоединением системы отопления к тепловой сети и одноступенчатым параллельным присоединением теплообменника ГВС

Охлажденная сетевая вода подается в обратный трубопровод тепловой сети. После подогревателя горячего водоснабжения нагретая водопроводная вода подается в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в подогреватель ГВС.

Эту схему с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения рекомендуется применять, если отношение максимального расхода теплоты на ГВС зданий к максимальному расходу теплоты на отопление зданий менее 0,2 или более 1,0. Схема используется при нормальном температурном графике сетевой воды в тепловых сетях.

Кроме того, применяется двухступенчатая система подогрева воды в системе ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30 ˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60 ˚С) используется сетевая вода из подающего трубопровода тепловой сети (рис. 10). Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в системе ГВС. В летний период нагрев происходит по одноступенчатой схеме.

Рис. 10. Схема теплового пункта с зависимым присоединением системы отопления к тепловой сети и двухступенчатым нагревом воды

Требования к оборудованию

Важнейшей характеристикой современного теплового пункта является наличие приборов учета тепловой энергии, что в обязательном порядке предусмотрено ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети».

Согласно разделу 16 указанных норм, в тепловом пункте должно быть размещено оборудование, арматура, устройства контроля, управления и автоматизации, с помощью которых осуществляют:

  • регулирование температуры теплоносителя по погодным условиям ;
  • изменение и контроль параметров теплоносителя;
  • учет тепловых нагрузок, затрат теплоносителя и конденсата;
  • регулирование затрат теплоносителя;
  • защиту локальной системы от аварийного повышения параметров теплоносителя;
  • доочистку теплоносителя;
  • заполнение и подпитку систем отопления;
  • комбинированное теплообеспечение с использованием тепловой энергии от альтернативных источников.

Подсоединение потребителей к теплосети должно осуществляться по схемам с минимальными затратами воды, а также экономией тепловой энергии за счет установки автоматических регуляторов теплового потока и ограничения затрат сетевой воды. Не допускается присоединение системы отопления к тепловой сети через элеватор вместе с автоматическим регулятором теплового потока.

Предписано использовать высокоэффективные теплообменники с высокими теплотехническими и эксплуатационными характеристиками и малыми габаритами. В наивысших точках трубопроводов тепловых пунктов следует устанавливать воздухоотводчики, причем рекомендуется применять автоматические устройства с обратными клапанами. В нижних точках следует устанавливать штуцеры с запорными кранами для спуска воды и конденсата.

На вводе в тепловой пункт на подающем трубопроводе следует устанавливать грязевик, а перед насосами, теплообменниками, регулирующими клапанами и счетчиками воды - сетчатые фильтры. Кроме того, фильтр-грязевик необходимо устанавливать на обратной линии перед регулирующими устройствами и приборами учета. По обе стороны от фильтров следует предусмотреть манометры.

Для защиты каналов ГВС от накипи нормами предписано использовать устройства магнитной и ультразвуковой обработки воды. Принудительная вентиляция, которой необходимо обустраивать ИТП, рассчитывается на кратковременное действие и должна обеспечивать 10-кратный обмен с неорганизованным приливом свежего воздуха через входные двери.

Во избежание превышения уровня шума, ИТП не допускается располагать рядом, под или над помещениями жилых квартир, спален и комнат игр детсадов и т.д. Кроме того, регламентируется, что установленные насосы должны быть с допустимым низким уровнем шума.

Тепловой пункт следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливают на месте или на щите управления.

Автоматизация ИТП должна обеспечивать:

  • регулирование затрат тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
  • заданную температуру в системе ГВС;
  • поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
  • заданное давление в обратном трубопроводе или необходимый перепад давления воды в подающем и обратном трубопроводах тепловых сетей;
  • защиту систем теплопотребления от повышенного давления и температуры;
  • включение резервного насоса при отключении основного рабочего и др.

Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. Это позволяет организовать централизованную систему диспетчеризации и осуществлять контроль за работой систем отопления и ГВС. Поставщиками оборудования для ИТП являются ведущие компании-производители соответствующего теплотехнического оборудования, например: системы автоматики - Honeywell (США), Siemens (Германия), Danfoss (Дания); насосы - Grundfos (Дания), Wilo (Германия); теплообменники - Alfa Laval (Швеция), Gea (Германия) и др.

Стоит также отметить, что современные ИТП включают достаточно сложное оборудование, которое требует периодического технического и сервисного обслуживания, заключающегося, к примеру, в промывке сетчатых фильтров (не реже 4 раз в год), чистке теплообменников (минимум 1 раз в 5 лет) и т.д. При отсутствии надлежащего технического обслуживания оборудование теплового пункта может прийти в негодность или выйти из строя. Примеры тому в Украине, к сожалению, уже есть.

В то же время, существуют подводные камни при проектировании всего оборудования ИТП. Дело в том, что в отечественных условиях температура в подающем трубопроводе централизованной сети часто не соответствует нормируемой, которую указывает теплоснабжающая организация в технических условиях, выдаваемых для проектирования.

При этом разница в официальных и реальных данных может быть довольно существенной (например, в реальности поставляется теплоноситель с температурой не более 100˚С вместо указанных 150˚С, или наблюдается неравномерность температуры теплоносителя со стороны центральной тепловой по времени суток), что соответственно, влияет на выбор оборудования, его последующую эффективность работы и, в итоге, на его стоимость. По этой причине рекомендуется при реконструкции ИТП на этапе проектирования, проводить замеры реальных параметров теплоснабжения на объекте и учитывать их в дальнейшем при расчетах и выборе оборудования. При этом из-за возможного несоответствия параметров, оборудование стоит проектировать с запасом в 5-20 %.

Реализация на практике

Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период 2001 - 2005 гг. в рамках реализации проекта Всемирного банка «Энергосбережение в административных и общественных зданиях». Всего было смонтировано 1173 ИТП. К настоящему времени по причине не решенных ранее вопросов периодического квалифицированного технического обслуживания порядка 200 из них пришли в негодность или требуют ремонта.

Видео. Реализованный проект с применением индивидуального теплового пункта в многоквартирном жилом доме, экономия до 30% теплоэнергии

Модернизация установленных ранее тепловых пунктов с организацией удаленного доступа к ним является одним из пунктов программы «Термосанация в бюджетных учреждениях г. Киева» с привлечением кредитных средств Северной экологической финансовой корпорации (NEFCO) и грантов «Фонда Восточного партнерства по энергоэффективности и окружающей среде» (E5P).

Помимо того, в минувшем году Всемирный банк объявил о старте масштабного шестилетнего проекта, направленного на повышение энергоэффективности теплоснабжения в 10 городах Украины. Бюджет проекта составляет 382 млн. долларов США. Направлены они будут, в частности, и на установку модульных ИТП. Планируется также ремонт котельных, замена трубопроводов и установка счетчиков тепловой энергии. Намечено, что проект поможет в снижении издержек, повышении надежности обслуживания и улучшении общего качества теплоты, поступающей свыше 3 млн. украинцам.

Модернизация теплового пункта - одно из условий повышения энергоэффективности здания в целом. В настоящее время кредитованием внедрения данных проектов занимается ряд украинских банков, в том числе и в рамках государственных программ. Подробнее об этом можно прочитать в предыдущем номере нашего журнала в статье «Термомодернизация: что именно и за какие средства ».

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 183 224

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

Схема работы ИТП построена на простом принципе поступления воды из труб в подогреватели системы снабжения горячей водой, а также отопительной системы. По обратному трубопроводу вода идет для вторичного использования. В систему холодная вода подается через систему насосов, также в системе вода распределяется на два потока. Первый поток уходит из квартиры, второй направлен в циркуляционный контур системы системы снабжения горячей водой для разогрева и последующего распределения горячей воды и отопления.

Схемы ИТП : различия и особенности индивидуальных тепловых пунктов

Индивидуальный тепловой пункт для системы снабжения горячей водой обычно имеет смеху, которая является:

  1. Одноступенчатой,
  2. Параллельной,
  3. Независимой.

В ИТП для системы отопления может быть использована независимая схема , там использован только пластинчатый теплообменник, который может выдержать полную нагрузку. Насос, обычно в этом случае сдвоенный, имеет функцию компенсировать потери давления, а из обратного трубопровода подпитывается система отопления. Этот вид ИТП имеет прибор учета тепловой энергии. Данная схема оснащена двумя пластинчатыми теплообменниками, каждый их которых рассчитан на пятидесятипроцентную нагрузку. Для того чтобы компенсировать потери давления в этой схеме можно использовать несколько насосов. Систему горячего водоснабжения подпитывает система снабжения холодной водой. ИТП для системы отопления и системы горячего водоснабжения собран по независимой схеме. В этой схеме ИТП с теплообменником используется всего один пластинчатый теплообменник . Он рассчитан на все 100% нагрузки. Для того чтобы компенсировать потери давления, используется несколько насосов.

Для системы горячего водоснабжения используется независимая двухступенчатая система, в которой задействованы два теплообменника. Постоянное подпитывание системы отопления осуществляется при помощи обратного трубопровода тепловой семи, также в этой системе задействованы подпиточные насосы. ГВС в этой схеме подпитывается из трубопровода с холодной водой.

Принцип работы ИТП многоквартирного дома

Схема ИТП многоквартирного дома основана на том, что по ней максимально эффективно должно передаваться тепло. Поэтому, по этой схеме оборудование ИТП должно размещаться так, чтобы максимально избежать потерь тепла и при этом эффективно распределить энергию по всем помещениям многоквартирного дома. При этом в каждой квартире температура воды должна быть определенного уровня и вода должна течь с необходимым напором. При регулировании заданной температуры и контроля за давлением, каждая квартира многоквартирного дома получает тепловую энергию в соответствии с распределением ее между потребителями в ИТП при помощи специального оборудования. Благодаря тому, что это оборудование работает автоматически и автоматизировано управляет всеми процессами, возможность аварийных ситуаций при использовании ИТП сведена к минимуму. Отапливаемая площадь жилья многоквартирного дома, а также и конфигурации внутренней теплосети – именно эти факты в первую очередь учитываются при обслуживании ИТП и УУТЭ , а также разработке узлов учета тепловой энергии.