Почему чаще всего применяется переменный электрический ток. Что такое переменный ток


Что такое переменный ток?

Основная масса начинающих радиолюбителей начинает изучение электроники с основ постоянного тока (DC), который течет в одном направлении и/или обладает напряжением постоянной полярности. Постоянный ток - это вид электричества, производимого батареями (имеющими положительные и отрицательные клеммы), или вид заряда, производимого трением определенных типов материалов друг о друга.

Однако, постоянный ток не является единственным видом электричества. Некоторые источники электропитания (в первую очередь роторные электромеханические генераторы) производят такое напряжение, полярность которого меняется с течением времени. Такой вид электричества известен как переменный ток (АС):

Так же как знакомое нам условное обозначение батареи используется для обозначения любого источника постоянного напряжения, кружок с волнистой линией внутри используется для обозначения любого источника переменного напряжения.

Можно было бы подумать, что практическое применение переменного тока ограничено. И действительно, в некоторых случаях переменный ток уступает постоянному по части практического применения. В тех системах, где электричество используется для рассеивания энергии в форме тепла, полярность или направление тока не имеет значения, - вполне достаточно, чтобы напряжения и тока хватало нагрузке для производства необходимого тепла (рассеивания энергии). Однако, используя переменный ток, можно создавать гораздо более эффективные электрогенераторы, электродвигатели и системы распределения энергии. Благодаря этому, в высокомощных системах преобладает использование именно переменного тока. Чтобы понять, почему это так, нам нужно узнать немного больше о переменном токе как таковом.

Согласно закону электромагнитной индукции Фарадея, электродвижущая сила, возникающая в замкнутом проводящем контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Это основополагающий принцип работы генератора переменного тока, или альтернатора.



Принцип работы альтернатора

Заметьте, как меняется полярность напряжения на катушках, когда при вращении возле них оказываются разные полюсы магнита. При соединении с нагрузкой такое напряжение будет создавать ток, периодически меняющий направление своего движения. Чем быстрее вращается вал альтернатора, тем быстрее будет вращаться магнит, и тем чаще напряжение будет менять полярность, а ток – направление за определённый промежуток времени.

Несмотря на то, что генераторы постоянного тока работают так же по принципу электромагнитной индукции, их устройство гораздо сложнее, чем у их соперников, генераторов переменного тока. У генераторов постоянного тока обмотка находится на валу (у альтернаторах на валу находится магнит), и эта вращающаяся обмотка соприкасается с неподвижными угольными «щётками». Такая конструкция необходима для переключения изменяющейся полярности на выходе катушки во внешнюю схему, чтобы на последней создавалась постоянная полярность:



Принцип работы генератора постоянного тока

Генератор, показанный на данном рисунке, производит два импульса напряжения за одно вращение вала. Оба импульса имеют одинаковую полярность. Чтобы генератор постоянного тока производил постоянное напряжение, а не короткие импульсы за каждый полупериод вращения, создаётся набор обмоток, которые периодически входят в контакт с щётками. Приведенный выше рисунок в упрощенной форме показывает то, что вы увидите на практике.

Проблемы, связанные с возникновением и прерыванием электрического контакта при движении обмотки очевидны (искрение и перегрев), особенно если вал генератора вращается с большой скоростью. Если в среде вокруг генератора содержатся легковоспламеняющиеся или взрывоопасные пары, проблемы, связанные с искрообразованием, усугубляются. Для работы генератора переменного тока (альтернатора) никаких щёток и коммутаторов не требуется, поэтому он застрахован от проблем, присущих генераторам постоянного тока.

Генераторы переменного тока имеют очевидные преимущества перед генераторами постоянного тока и при использовании их в качестве электродвигателей. В отличие от электродвигателей постоянного тока, двигатели переменного тока не страдают проблемой соприкосновения щёток с подвижной обмоткой. Электродвигатели постоянного и переменного тока по своему устройству очень похожи на соответствующие электрогенераторы.

Таким образом, становится понятно, что конструкция генераторов и электродвигателей переменного тока гораздо проще конструкции генераторов и электродвигателей постоянного тока. Относительная простота этих устройств на практике выливается в гораздо большую надежность и рентабельность. Для чего же еще используют переменный ток? Наверняка должно быть что-то еще кроме применения его в генераторах и электродвигателях! И действительно, спектр применения переменного тока очень широк. Наверняка вы слышали о таком явлении, как взаимная индукция. Она возникает при размещении двух или более обмоток таким образом, что переменное магнитное поле, создаваемое одной из обмоток наводит напряжение в другой. Если на одну обмотку мы подадим переменное напряжение, то на другой мы также получим переменное напряжение. Такое устройство известно как трансформатор.



Главное предназначение трансформатора состоит в его способности повышать и понижать напряжение на вторичной обмотке. Напряжение переменного тока, возникающее во вторичной обмотке равно напряжению переменного тока на первичной обмотке, умноженному на коэффициент отношения числа витков вторичной обмотки к числу витков первичной. Если же со вторичной обмотки ток подаётся в нагрузку, то изменение тока на вторичной обмотке будет прямо противоположным: ток первичной обмотки умножается на коэффициент отношения числа витков первичной к числу витков вторичной обмотки. Механическим аналогом подобных отношений может служить пример с крутящим моментом и скоростью (вместо напряжения и тока, соответственно):



Если соотношение витков обмоток обратное, т.е. первичная обмотка имеет меньше витков, чем вторичная, то трансформатор увеличивает напряжение источника до более высокого уровня:



Способность трансформатора повышать и понижать переменное напряжение дает переменному току неоспоримое преимущество над постоянным в области распределения энергии (см. рисунок ниже). Гораздо эффективнее передавать электроэнергию на большие расстояния при высоком напряжении и низком токе (провода меньшего диаметра с меньшими потерями на сопротивление), а затем понижать напряжение и усиливать ток при подаче энергии конечным потребителям.



Благодаря трансформаторам передача электрической энергии на большие расстояния стала гораздо более практичной. Не имея возможности эффективного увеличения и понижения напряжения было бы непомерно дорого создавать системы энергообеспечения для больших расстояний (более нескольких десятков километров).

Для работы трансформаторов необходим только переменный ток. Поскольку явление взаимоиндукции основано на переменных магнитных полях, трансформаторы просто не будут работать на постоянном токе (постоянный ток способен создавать только постоянные магнитные поля) . Конечно, на первичную обмотку трансформатора можно подать постоянный прерывистый (импульсный) ток, чтобы создать переменное магнитное поле (как это делается в автомобильной системе зажигания, для создания искры в свече от низковольтной батареи постоянного тока), но в таком варианте импульсный постоянный ток ничем не отличается от переменного. Возможно, именно по этой причине переменный ток находит более широкое применение в энергосистемах.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди - получается ток.

Генератор - как насос для воды, а провод - как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток - это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает - это и есть смена направлений движения. А 220 вольт - это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток - это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток – отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное – в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).


Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.


Горизонтальная ось отображает угол поворота в градусах, вертикальная – величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)


Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.


Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.


Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Переменным током называется электрический ток, равными периодами изменяющийся по направлению и модулю. Также переменным считается ток, возникающий в однофазных и трехфазных сетях. Для существующих устройств, потребляющих , преобразование переменного производится с помощью специальных выпрямителей.

Возникновение переменного тока

Для того, чтобы в электрической цепи возник ток, используются специальные источники для его выработки, которые создают переменную электродвижущую силу (ЭДС). Электродвижущая сила периодически изменяется по своей величине и направлению. Источники ЭДС - это фактически генераторы переменного тока.

Простейшая схема выработки переменного тока показана на рисунке:

Это устройство состоит из двух основных частей. Неподвижная часть - магнит, образующий между своими полюсами магнитное поле. Плотность магнитных силовых линий одинакова, поэтому магнитное поле - равномерное. Подвижная часть устройства - рамка, имеющая прямоугольную форму. Она изготовлена из медной проволоки, закреплена на продольной оси и с помощью внешней движущей силы вращается в магнитном поле. Выходные концы соединены с медными контактными кольцами. Кольца вращаются одновременно с рамкой и скользят по щеткам.

Чтобы убедиться, что данное устройство действительно образует переменную электродвижущую силу, применим широко известное «правило правой руки».

Правая рука располагается таким образом, что ладонь смотрит в направлении «север» нашего магнита. При этом большой палец отогнут в сторону движения той стороны медной рамки, где должно определиться направление ЭДС. Направление вытянутых пальцев руки покажет нам и направление ЭДС. При определении ЭДС в разных сторонах, значение, в конечном итоге, будет общим. Кроме того при каждом обороте направление ЭДС изменяется. Это происходит в связи с тем, что рабочие стороны рамки во время одного оборота проходят под различными полюсами магнита.

Возникновение электродвижущей силы

Величина электродвижущей силы, которая индуктируется в рамке, меняется со скоростью пересечения силовых линий магнитного поля. В вертикальном расположении - скорость пересечения максимальная. ЭДС в рамке - также максимальная. При прохождении рамкой горизонтального положения стороны не пересекают магнитные силовые линии, индукция ЭДС не производится.

Из всего этого следует, что равномерное вращение рамки обеспечивает индукцию ЭДС, которая равномерно изменяется по величине и направлению. Электродвижущая сила, возникающая в рамке создает, в конечном итоге, переменный ток во внешней цепи.

Мы рассмотрели классическую схему получения переменного тока. В действительности его вырабатывают с помощью генератора переменного тока. Здесь электромагнит, наоборот, вращается и имеет два и более полюсов. Его называют ротором. Роль рамки играет обмотка статора (неподвижная часть), с которой и снимается переменное напряжение. Для промышленного производства выработка производится с помощью генераторов различной мощности, установленных на электростанциях (ГЭС, ГРЭС, АЭС).

В наше время электрический ток исполь-зуется во всех отраслях народного хозяйства. И мы знаем, что ток бывает двух видов: по-стоянный и переменный. Напомним, что при постоянном токе электроны в электрической цепи движутся все время в одном направлении, а при переменном токе непрерывно меняют на-правление. Какой же ток — переменный или постоянный — больше нужен технике и про-мышленности?

Передача электрической энергии на большие расстояния возможна только при высоких на-пряжениях тока, достигающих 110, 220, 400 и даже 500—800 тыс. в. А генератор электриче-ской станции способен создать напряжение не выше 20 тыс. в. В то же время для различных электрических машин и аппаратов нужен элект-рический ток напряжением всего в несколько десятков или сотен вольт. Вот здесь переменный ток оказывается незаменимым. Ведь он позволяет с помощью трансформаторов легко изменять напряжение в любых пределах: повы-шать на электростанциях для передачи на боль-шие расстояния и снова понижать непосредст-венно у потребителей.

В конце прошлого столетия русский элект-ротехник М. О. Доливо-Добровольский получил трехфазный переменный ток, обладающий очень важными достоинствами. Во-первых, трехфаз-ные линии электропередач выгоднее однофаз-ных: по ним при той же затрате проводов и изо-ляции можно передать больше энергии, чем по однофазным. А во-вторых, благодаря свой-ству трехфазного переменного тока создавать вращающееся магнитное поле удалось построить очень простые и надежные асинхронные элек-трические двигатели, которые сейчас широко используются для привода станков и машин.

Вот эти качества переменного тока позво-лили ему занять ведущее положение в технике и послужили причиной того, что в наши дни все промышленные электростанции вырабаты-вают только трехфазный переменный ток.

Больше половины вырабатываемой электри-ческой энергии потребляют электрические дви-гатели. Кроме простых асинхронных двигате-лей, не имеющих обмотки на роторе, есть дви-гатели с обмоткой и контактными кольцами на роторе. Такие моторы развивают большие усилия при трогании с места, и поэтому их чаще всего применяют на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения. Благодаря этому они применяются в машинах и механиз-мах, требующих постоянной скорости движе-ния независимо от их нагрузки: в эскалато-рах метрополитена, в больших водяных насосах, электрических часах и др. Электрические дви-гатели бывают маленькими, меньше катушки ниток, и огромными, как карусель.

Применение для привода станков сразу не-скольких электрических двигателей позволило устранить сложную систему передач, упро-стить механизмы станков, облегчило управле-ние ими и дало возможность создать автома-тические линии.

Малые размеры и простота электрических двигателей позволили использовать электри-ческую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки, гайковерты и другой инстру-мент намного облегчили труд рабочих, сделали его более производительным. Электрические полотеры, пылесосы, стиральные машины и хо-лодильники пришли на помощь домашним хозяйкам. А еще раньше в домах появились электрические чайники, утюги, плитки.

Переменный ток — хороший источник теп-ла. В мощных дуговых электропечах плавят и варят металл. Электрические печи широко используются в установках «искусственного климата», для обогрева сушильных шкафов и помещений, нагрева металлов и т. д.

Электрические лампочки светят независимо от того, какой ток идет через их нити: перемен-ный или постоянный. Но передача переменного тока более экономична, и трансформаторы по-зволяют легко получать и поддерживать необ-ходимое напряжение. Поэтому осветительная сеть городов и сел питается переменным током.

Но вот мы сели в трамвай, троллейбус, в ва-гон метро, в пригородную электричку — и сра-зу попали во владения постоянного тока. Дело в том, что простые и удобные электрические дви-гатели переменного тока не позволяют плавно менять скорость своего вращения. А изменять скорость движения приходится почти непрерыв-но; с такой работой может хорошо справиться только тяговый двигатель постоянного тока.

Питание таких двигателей осуществляется от специальных тяговых выпрямительных под-станций, на которых переменный ток преобра-зуется в постоянный, а затем подается в кон-тактную сеть — в провода и рельсы.

Но ученые и инженеры задумались, нельзя ли на транспорте применить переменный ток. Оказалось, можно. И уже сейчас на многих железных дорогах в контактных проводах течет переменный ток напряжением до 25 тыс. в, а в дальнейшем переменным током будут элек-трифицированы все железные дороги. Но дви-гатели электровозов по-прежнему работают на постоянном токе: выпрямительные уста-новки, превращающие переменный ток в по-стоянный, в этом случае находятся также на электровозах.

При помощи электрических двигателей по-стоянного тока приводятся в движение колеса тепловозов, механизмы прокатных станов, ша-гающих экскаваторов и многих других машин.

Есть и еще большая и важная область, в ко-торой переменный ток не может соперничать с постоянным. Речь идет об электролизе — про-цессе, связанном с прохождением тока через жидкие растворы — электролиты. Под дейст-вием постоянного тока электролит разлагается на отдельные элементы, которые осаждаются на опущенных в электролит электродах. Таким способом получают алюминий, магний, цинк, медь, марганец. В химической промыш-ленности при помощи электролиза добывают фтор, хлор, водород и другие вещества. С по-мощью электролиза наносят защитные покры-тия на металлические изделия (см. ст. « »).

Постоянный ток успешно соперничает с пе-ременным в сварочном деле (см. ст. «Как сва-ривают металл»). При сварке постоянным током частички металла переносятся с электрода на изделие более правильно и шов получается лучше, чем при сварке переменным током.

Есть у постоянного тока еще одна особен-ность. Скорее не у самого тока, а у его источ-ников. Чтобы получить переменный электри-ческий ток, нужно непременно приводить в дви-жение генератор, а постоянный ток могут давать неподвижные аккумуляторные батареи и галь-ванические элементы. Эти свойства источников электрического тока в ряде случаев застав-ляют отдавать предпочтение постоянному току. Например, как завести двигатель стоящего на месте автомобиля? Достаточно нажать кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заведет мотор. А когда мотор работает, он вращает генератор, который вновь заряжает аккумуляторную батарею. Такой обратимый процесс недоступен для переменного тока.

На многих шахтах работают электровозы с аккумуляторными батареями, а в цехах заво-дов, на вокзалах и на складах часто можно встретить небольшие электрические тележки с аккумуляторами — электрокары.

Большие аккумуляторные батареи исполь-зуются для питания устройств сигнализации, управления и аварийного освещения на элект-ростанциях, в поездах и даже в троллейбусах. Легкие аккумуляторы и гальванические бата-реи применяются в переносных радиостанциях, в радиоприемниках, в электрических фонарях, измерительных и других приборах.

А вспомните об искусственных спутниках Земли и космических кораблях: на них уста-новлены полупроводниковые солнечные бата-реи — они тоже дают постоянный электриче-ский ток (см. ст. « »).

Прежде чем закончить наш рассказ, вер-немся ненадолго к его началу — к передаче электрической энергии по проводам. Переда-ваемые мощности и длина линий электропере-дач непрерывно возрастают, и приходится повы-шать напряжение до 500 и даже до 800 тыс. в.

И вот оказалось, что при этих условиях пе-редавать электрическую энергию выгоднее на постоянном токе. Вдвое лучше используется изо-ляция, увеличивается пропускная способность воздушных линий электропередач, уменьшает-ся количество проводов... Важно, что отпа-дет необходимость в сложном процессе синхро-низации при включении линий, соединяющих большие электростанции или энергетические системы. Этого, пожалуй, вполне достаточно, чтобы доказать целесообразность использова-ния постоянного тока для сверхдальних передач энергии. Правда, для получения постоянного тока высокого напряжения и последующего преобразования его в переменный ток низкого напряжения нужны очень сложные и дорогие преобразовательные подстанции. Но, несмотря на это, расчеты показывают, что в ряде случаев для сверхмощных и сверхдальних электропе-редач все же выгоднее использовать постоян-ный ток. Поэтому сейчас уже ведутся работы по сооружению таких линий электропередач на постоянном токе.

Конечно, перечисленными здесь примерами далеко не исчерпываются все области приме-нения электрической энергии. Здесь ничего не сказано об ее использовании для телеграфной и телефонной связи, для радио и телевидения и прочих целей, но об этом вы прочтете в других статьях этого тома. Ясно одно: нам нужен и пе-ременный и постоянный ток и никогда один из них не вытеснит другого. Наоборот, разум-ное применение обоих позволяет лучше и пол-нее использовать электрическую энергию на благо человека.