Изоляция тепловых сетей минеральной ватой. Каучуковые и пенопластовые материалы


Важное значение в устройстве тепло­провода имеет тепловая изоляция. От каче­ства изоляционной конструкции теплопро­вода зависят не только тепловые потери, но, что не менее важно, его долговечность. При соответствующем качестве материалов и технологии изготовления тепловая изоляция может одновременно выполнять роль антикоррозионной защиты наружной поверхности стального трубопровода. К таким материалам, в частности, относятся полиуретан и производные на его основе – полимербетон и бион.

Тепловая изоля­ция устраивается на трубопроводах, арматуре, фланцевых соедине­ниях, компенсаторах и опорах для следующих целей:

уменьшения потерь тепла при его транспортировании, что снижает установленную мощность источника тепла и расход топлива;

уменьшения падения температуры теплоносителя, подаваемого к потребителям, что снижает требуемый расход теплоносителя и по­вышает качество теплоснабжения;

понижения температуры на поверхности теплопровода и воз­духа в местах обслуживания (камерах, каналах), что устраняет-опасность ожогов и облегчает обслуживание теплопроводов.

Основные требования к теплоизоляционным конструкциям заключаются в следующем:

1) низкая теплопроводность как в сухом состоянии, так и в состоянии естественной влажности;

2) малое водопоглощение и небольшая высота капиллярного подъема жидкой влаги;

3) малая коррозионная активность;

4) высокое электрическое сопротивление;

5) щелочная реакция среды (рН > 8,5);

6) достаточная механическая прочность!

Не допускается использовать материалы, подверженные горению и гниению, а также содержащие вещества, способные выделять кислоты, крепкие щелочи, вредные газы и серу.

Наиболее тяжелые условия для работы теплопроводов возникают при подземной канальной и особенно бесканальной прокладке вслед­ствие увлажнения тепловой изоляции грунтовыми и поверхностными водами и наличия в грунте блуждающих токов. В связи с этим к важ­нейшим требованиям к теплоизоляционным материалам относятся малое водопоглощение, высокое электросопротивление, а при беска­нальной прокладке высокая механическая прочность.



В качестве тепловой изоляции в тепловых сетях в настоящее вре­мя применяют в основном изделия из неорганических материалов (минеральной и стеклянной ваты), известково-кремнеземистые, совелитовые, вулканитовые, а также составы, изготовляемые "из ас­беста, бетона, асфальта, битума, цемента, песка или других компо­нентов для бесканальной прокладки: битумоперлит, асфальтоизол, армопенобетон, асфальтокерамзитобетон и др.

В зависимости от вида используемых изделий тепловую изоляцию подразделяют на оберточную (маты, полосы, шнуры, жгуты), штуч­ную (плиты, блоки, кирпичи, цилиндры, полуцилиндры, сегменты, скорлупы), заливочную (монолитную и литую), мастичную и засып­ную.

Оберточные и штучные изделия применяют для всех элементов тепловых сетей и могут быть как съемными - Для оборудования, требующего обслуживания (сальниковые компенсаторы, фланцевые соединения), так и несъемными. Крепят их при помощи бандажей, проволоки, винтов и т. п., выполненных из оцинкованных, кадмиро-ванных или коррозионно-стойких материалов, и покровного слоя. Заливочную и засыпную изоляцию применяют обычно для элементов тепловых сетей, не требующих обслуживания. Мастичную изоляцию допускается использовать для запорной и дренажной арматуры и сальниковых компенсаторов при условии выполнения съемных кон­струкций для патрубков сальниковых компенсаторов и сальников уплотнений арматуры.

Теплоизоляционные конструкции стальных трубопроводов при надземной и подземной канальной прокладке, а также при беска­нальной прокладке в монолитной оболочке состоят обычно из трех основных слоев: противокоррозионного, теплоизоляционного и покровного. Противокоррозионный слой накладывается на наружную; поверхность стальной трубы и выполняется из обмазочных и оберточ­ных материалов в несколько слоев (изола или бризола на изольной мастике, эпоксидных или органосиликатных эмалей и красок, стекло-эмали и др.). Поверх него укладывается основной теплоизоляцион­ный слой из оберточных, штучных или монолитных изделий. За ним идет покровный слой, защищающий теплоизоляционный слой от воз­действия влаги и воздуха и от механических повреждений. Выпол­няется он при подземной прокладке из двух-трех слоев изола или бризола на изольной мастике, асбестоцементной штукатурки по ме­таллической сетке, лакостеклоткани с различными пропитками, фоль­гоизола, а при надземной прокладке - из листов оцинкованной ста­ли, алюминия, сплавов алюминия, стеклоцемента, стеклорубероида, стеклопластика и т. п.

Канальные теплопроводы. В каналах с воздушным зазором изоля­ционный слой может выполняться в виде подвесной или монолитной конструкции. На рис. 8.25. показан пример выполнения подвесной изоляционной конструкции. Она состоит из трех основных элементов:

а) антикоррозийного защитного слоя 2 в виде наложенных в заводских условиях на стальной трубопровод 1 нескольких слоев эмали или изола, имеющих достаточную механическую прочность и обладающих высоким электросопротивлением и необхо­димой температуростойкостью;

б) теплоизоляционного слоя 3, выпол­ненного из материала с низким коэффици­ентом теплопроводности, например мине­ральной ваты или пеностекла, в виде мягких матов или твердых блоков, укладываемых поверх защитного антикоррозионного слоя;

в) защитного механического покрытия 4 в виде металлической сетки, выполняю­щей роль несущей конструкции для тепло­изоляционного слоя.

Для увеличения долговечности теплопровода несущая конструкция подвесной изоляции (вязальная проволока или металлическая сетка) покрывается сверху оболочкой из некорродирующих материалов или асбоцементной штукатуркой.

Рис. 8.25. Теплопровод в непроходном канале с воздушным зазором

1 – трубопровод; 2 – антикоррозионное покрытие; 3 – теплоизоляционный слой; 4 – защитное механическое покрытие

Бесканальные теплопроводы . Они находят оправданное применение в том случае, когда по надежности и долговечности не уступают теплопроводам в непроходных каналах и даже превосходят их, являясь более экономичными по сравнению с последними по начальной стоимости и трудозатратам на сооружение и эксплуатацию.

Требования к изоляционным конструкциям бесканальных теплопроводов такие же, как и к изоляционной конструкции теп­лопроводов в каналах, а именно высокое и устойчивое в эксплуатационных услови­ях тепло–, влаго–, воздухо– и электросопро­тивление.

Бесканальные теплопроводы в монолитных оболочках . Применение бесканальных теплопроводов в монолитных обо­лочках – один из основных путей индустриализации строительства тепловых сетей. В этих теплопроводах на стальной трубопровод наложена в заводских условиях обо­лочка, совмещающая тепло– и гидроизоля­ционные конструкции. Звенья таких эле­ментов теплопровода длиной до 12 м дос­тавляются с завода на место строительства, где выполняется их укладка в подготовленную траншею, стыковая сварка отдельных звеньев между собой и накладка изоляцион­ных слоев на стыковое соединение. Принципиально теплопроводы с монолитной изоляцией могут применяться не только бесканально, но и в каналах.

Современным требованиям к надежности и долговечности достаточно полно удовлетворяют теплопроводы с монолитной теплоизоляцией из ячеистого полимерного материала типа пенополиуретана с замкнутыми порами и интегральной структурой, выполненной методом формования на стальной трубе в полиэтиленовой оболочке (типа «труба в трубе»).

При этом предварительно теплоизолированные трубопроводы выполняются с оболочкой из полиэтилена высокого давления. Пространство между оболочкой и трубой заполняется жестким пенополиуретаном. В пенополиуретане заложены медные проводники для контроля наличия влаги в теплоизоляции трубопровода.

Благодаря хорошей адгезии периферийных слоев изоляции к поверхности контакта, т.е. к наружной поверхности стальной трубы и внутренней поверхности полиэтиленовой оболочки, существенно повышает­ся долговременная прочность изоляцион­ной конструкции, так как при тепловой де­формации стальной трубопровод переме­щается в грунте совместно с изоляционной конструкцией и не возникает торцевых за­зоров между трубой и изоляцией, через ко­торые влага может проникнуть к поверхно­сти стальной трубы.

Средняя теплопроводность пенополиуретановой теплоизоляции составляет в за­висимости от плотности материала 0,03 – 0,05 Вт/(м ∙ К), что примерно втрое ниже теплопроводности большинства широко при­меняемых теплоизоляционных материалов для тепловых сетей (минеральная вата, армопенобетон, битумоперлит и др.).

Благодаря высокому тепло– и электросопротивлению и низким воздухопроницаем мости и влагопоглощению наружной поли­этиленовой оболочки, создающей дополни­тельную гидроизоляционную защиту, теплогидроизоляционная конструкция за­щищает теплопровод не только от тепловых потерь, но, что не менее важно, и от наруж­ной коррозии. Поэтому при применении этой конструкции изоляции отпадает необходимость в специальной антикоррозийной защите поверхности стального трубопровода.

Использование трубопроводов с пенополиуретановой изоляцией позволяет снизить потери тепловой энергии в 3-5 раз по сравнению с существующими видами тепловой изоляции (битумперлит, битумкерамзит, пенобетон и др.) и получить годовую экономию около 700,0 Гкал/год в расчете на 1 км.

Строительство тепловых сетей с пенополдиуретановой теплоизоляцией осуществляется в несколько раз быстрее по сравнению с канальными и стоимость в 1,3-2 раза ниже, а срок службы составляет 30 лет при долговечности обычно применяемых конструкций 5-12 лет.

Битумоперлит, битумокерамзит и другие аналогичные изоляционные материалы на битумном вяжущем обладают сущест­венными технологическими преимущества­ми, позволяющими сравнительно просто индустриализировать изготовление моно­литных оболочек на трубопроводах. Но на­ряду с этим указанная технология изготов­ления оболочек нуждается в улучшении для обеспечения равномерной плотности и гомогенности битумоперлитной массы как по периметру трубы, так и по ее длине.

Кроме того, битумоперлитная изоляция, как и многие другие материалы на битум­ном вяжущем, при длительном прогреве при температуре 150°С теряет водостой­кость из–за потери легких фракций, что приводит к снижению антикоррозионной стойкости этих теплопроводов. Для повы­шения антикоррозионной стойкости битумоперлита в процессе изготовления горячей формовочной массы вводят полимерные добавки в портландцемент, что повышает температуростойкость, влагостойкость, прочность и долговечность конструкции.

Бесканальные теплопроводы в засыпных порошках . Эти теплопроводы находят примене­ние главным образом при трубопроводах малого диаметра – до 300 мм.

Преимущество бесканальных теплопроводов в засыпных порошках по сравнению с теплопро­водами с монолитными оболочками заключается в простоте изготовления изоляционного слоя. Для сооружения таких теплопроводов не требу­ется наличия в районе строительства тепловых сетей завода, на который должны предваритель­но поступать стальные трубы для наложения мо­нолитной изоляционной оболочки. Изоляцион­ный засыпной порошок в соответствующей упа­ковке, например в полиэтиленовых мешках, лег­ко транспортируется на большие расстояния железнодорожным или автотранспортом.

В качестве таких порошков применяют самоспекающийся пенобетон, перлитобетон, асфальт или асфальтобетон.

Как известно, в двухтрубных тепловых сетях температурные режимы, а следовательно, и температурные деформации подающего и обратного трубопроводов неоди­наковы. В этих условиях адгезия слоя теплоизоляции к наружной поверхности стальных трубопроводов недопустима. Для за­щиты наружной поверхности стальных трубо­проводов от адгезии с изоляционным массивом они покрываются снаружи слоем антикоррозионного мастичного материала, например асфальтовой мастикой, до заливки жидким пеноцементным раствором.

Литые конструкции теплоизоляции бесканальных трубопроводов. Из литых конструкций бесканальных теплопроводов некоторое применение получили теплопроводы в пенобетонном массиве в качестве материала для сооружения таких теплопроводов может быть использован перлитобетон. Смонтированные в траншеи стальные трубопроводы заливаются жидкой композицией, приготовленной непосредственно на трассе или доставленной в контейнере с производственной базы. После схватывания бетобетонный или перлитобетонный массив засыпается грунтом.

Контрольные вопросы

1. В чем заключаются основные требования к конструкциям современных теплопроводов? Назовите сортамент трубопроводов тепловой сети и типы применяемой арматуры.

2. Сравните подземные теплопроводы в проходных каналах, непроходных и бесканальных. Назовите преимущества и недостатки каждого типа прокладки и основные области их целесообразного применения.

3. Назовите конструкции современных компенсаторов температурных деформаций трубопроводов тепловых сетей. Как производится расчет и подбор П - образных компенсаторов?

4. Охарактеризуйте конструкции опор трубопроводов тепловых сетей. Приведите расчетную формулу для определения результирующего усилия, действующего на неподвижную опору теплопровода.

5. Каковы основные особенности и требования к теплоизоляционным конструкциям теплопроводов?

В практике частного строительства не столь часто, но все же встречаются ситуации, когда коммуникации отопления требуется не только развести по помещениям основного дома, но и протянуть их к другим, рядом расположенным зданиям. Это могут быть жилые флигели, пристройки, летние кухни, хозяйственные или сельскохозяйственные постройки, например, пользующиеся для содержания домашних животных или птицы. Не исключается вариант, когда, наоборот, сама автономная котельная расположена в отдельном здании, на некотором удалении от основного жилого корпуса. Бывает, что дом подключается к центральной теплотрассе, от которой к нему протягиваются трубы.

Прокладка труб отопления между зданиями возможна двумя вариантами – подземная (канальная или бесканальная) и открытая. Менее трудоёмким видится процесс монтажа локальной теплотрассы над землей, и к этому варианту в условиях самостоятельного строительства прибегают чаще. Одно из основных условий эффективности работы системы – это правильно спланированная и качественно исполненная теплоизоляция для труб отопления на открытом воздухе. Именно этот вопрос будет рассмотрен в настоящей публикации.

Казалось бы, нонсенс – зачем утеплять и без того почти всегда горячие трубы отопительной системы? Возможно, кого-то может ввести в заблуждение своеобразная «игра слов». В рассматриваемом случае, конечно, корректнее будет вести разговор, оперируя понятием «термоизоляция».

Термоизоляционные работы на любых трубопроводах преследуют две основные цели:

  • Если трубы используются в системах отопления или горячего водоснабжения, то на первый план выходит снижение тепловых потерь, поддержание требуемой температуры перекачиваемой жидкости. Этот же принцип справедлив и для производственных или лабораторных установок, где по технологии требуется поддержание определенной температуры передаваемого по трубам вещества.
  • Для трубопроводов холодного водоснабжения или канализационных коммуникаций главным фактором становится именно утепление, то ест недопущения падения в трубах температуры ниже критической отметки, предотвращения промерзания, ведущего к выходу системы из строя и деформации труб.

Кстати, такая мера предосторожности требуется и для теплотрасс, и для труб ГВС – никто полностью не застрахован от аварийных ситуаций на котельном оборудовании.

Сама цилиндрическая форма труб предопределяет весьма немалую площадь постоянного теплообмена с окружающей средой, а значит – значительные теплопотери. И они, естественно, растут по мере повышения диаметров трубопровода. Приведенная ниже таблица наглядно показывает, как изменяется величина теплопотерь в зависимости от разницы температур внутри и снаружи трубы (столбец Δt°), от диаметра труб и от толщины термоизоляционного слоя (приведены данные с учетом использования утеплительного материала со средним коэффициентом теплопроводности λ = 0,04 Вт/м×°С).

Толщина слоя теплоизоляции. мм Δt.°С Внешний диаметр трубопровода (мм)
15 20 25 32 40 50 65 80 100 150
Величина тепловых потерь (на 1 погонный метр трубопровода. Вт).
10 20 7.2 8.4 10 12 13.4 16.2 19 23 29 41
30 10.7 12.6 15 18 20.2 24.4 29 34 43 61
40 14.3 16.8 20 24 26.8 32.5 38 45 57 81
60 21.5 25.2 30 36 40.2 48.7 58 68 86 122
20 20 4.6 5.3 6.1 7.2 7.9 9.4 11 13 16 22
30 6.8 7.9 9.1 10.8 11.9 14.2 16 19 24 33
40 9.1 10.6 12.2 14.4 15.8 18.8 22 25 32 44
60 13.6 15.7 18.2 21.6 23.9 28.2 33 38 48 67
30 20 3.6 4.1 4.7 5.5 6 7 8 9 11 16
30 5.4 6.1 7.1 8.2 9 10.6 12 14 17 24
40 7.3 8.31 9.5 10.9 12 14 16 19 23 31
60 10.9 12.4 14.2 16.4 18 21 24 28 34 47
40 20 3.1 3.5 4 4.6 4.9 5.8 7 8 9 12
30 4.7 5.3 6 6.8 7.4 8.6 10 11 14 19
40 6.2 7.1 7.9 9.1 10 11.5 13 15 18 25
60 9.4 10.6 12 13.7 14.9 17.3 20 22 27 37

По мере роста толщины слоя изоляции общий показатель теплопотерь снижается. Однако, обратите внимание, что даже достаточно толстый слой в 40 мм не исключает теплопотерь полностью. Вывод один – необходимо стремиться к тому, чтобы использовать утеплительные материалы с минимально возможным коэффициентом теплопроводности – это одно из главных требований к термоизоляции трубопроводов.

Иногда требуется и система подогрева трубопроводов!

При прокладке водопроводных или канализационных коммуникаций случается, что в силу особенностей местного климата или конкретных условий монтажа одной термоизоляции явно недостаточно. Приходится прибегать к принудительному , к установке греющих кабелей – подробнее эта тема рассмотрена в специальной публикации нашего портала.

  • Материал, который используется для термоизоляции труб, по возможности, должен обладать гидрофобными качествами. Мало току будет от утеплителя, пропитавшегося водой – он и теплопотерь не предотвратит, и сам вскоре разрушится под действием отрицательных температур.
  • Термоизоляционная конструкция должна иметь надежную внешнюю защиту. Во-первых, она нуждается в защите от атмосферной влаги, особенно если применен утеплитель, способный активно впитывать воду. Во-вторых, материалы следует закрыть от воздействия ультрафиолетового спектра солнечного света, действующего на них губительно. В-третьих, не следует забывать про ветровую нагрузку, способную нарушить целостность термоизоляции. И, в-четвертых, остается фактор внешнего механического воздействия, ненамеренного, в том числе со стороны животных, или из-за банальных проявлений вандализма.

Кроме того, для любого хозяина частного дома, наверняка, небезразличны и моменты эстетичного внешнего вида проложенной теплотрассы.

  • Любой применяемы на теплотрассах термоизоляционный материал должен иметь диапазон рабочих температур, соответствующий реальным условиям применения.
  • Важное требование к утеплительному материалу и внешней его облицовке – это долговечность использования. Никому не захочется возвращаться к проблемам термоизоляции труб даже раз в несколько лет.
  • С практической точки зрения одним из основных требований выступает простота монтажа термоизоляции, причем в любом положении и на любом сложном участке. Благо, в этом плане производители не устают радовать удобными в применении разработками.
  • Важное требование к термоизоляции – ее материалы должны и сами быть химически инертными, и не вступать ни в какие реакции с поверхностью труб. Подобная совместимость – залог длительности безаварийной эксплуатации.

Вопрос стоимости бывает тоже очень важен. Но в этом плане разброс цен у специализированных утеплителей для труб – очень большой.

Какие материалы используются для утепления надземных теплотрасс

Выбор термоизоляционных материалов для труб отопления при их наружной прокладке – достаточно велик. Они бывают рулонного типа или в виде матов, им может придаваться удобная для монтажа цилиндрическая или иная фигурная форма, есть утеплители, которые наносятся в жидком виде и приобретают свои свойства лишь после застывания.

Утепление с помощью вспененного полиэтилена

Вспененный полиэтилен справедливо относят к очень эффективным термоизоляторам. И что еще очень важно, стоимость этого материала – одна из самых низких.

Коэффициент теплопроводности вспененного полиэтилена обычно в области 0,035 Вт/м×°С – это очень хороший показатель. Мельчайшие изолированные друг от друга пузырьки, заполненные газом, создают эластичную структуру, и с таким материалом, если приобретена его рулонная разновидность, очень удобно работать на сложных по конфигурации участках труб.

Такая структура становится надежной преградой для влаги – при правильном монтаже ни вода, ни водяные пары через нее проникнуть к стенкам трубы не смогут.

Плотность пенополиэтилена невысока (около 30 – 35 кг/м³), и термоизоляция никак не утяжелит трубы.

Материал с некоторым допущением можно отнести к категории малоопасных с точки зрения возгораемости – он обычно относится к классу Г-2, то есть его очень непросто воспламенить, а без внешнего пламени он быстро затухает. Причем продукты горения, в отличие от многих других термоизоляторов, не представляют сколь-нибудь серьезной токсической опасности для человека.

Рулонный вспененный полиэтилен для утепления наружных теплотрасс будет и неудобен, и нерентабелен – придется наматывать несколько слоем, чтобы добиться требуемой толщины термоизоляции. Гораздо удобнее в работе материал в виде гильз (цилиндров), в которых предусмотрен внутренний канал, соответствующий диаметру утепляемой трубы. Для надевания на трубы обычно по длине цилиндра на стенке сделан надрез, который после монтажа можно заклеить надежным скотчем.

Надеть изоляцию на трубу — труда не составляет

Более эффективная разновидность пенополиэтилена – пенофол, у которого с одной стороны имеется фольгированный слой. Это блестящее покрытие становится своеобразным термоотражателем, что существенно повышает утеплительные качества материала. Кроме того – это дополнительный барьер от проникновения влаги.

Пенофол также может быть рулонного типа или в виде профильных цилиндрических элементов – специально для термоизоляции труб различного предназначения.

И все вспененный полиэтилен для термоизоляции именно теплотрасс используется нечасто. Он, скорее, подойдет для других коммуникаций. Причина тому – довольно невысокий температурный диапазон эксплуатации. Так. если взглянуть на физические характеристики, то верхний предел балансирует где-то на грани 75 ÷ 85 градусов — выше возможны нарушения структуры и появление деформаций. Для автономного отопления, чаще всего, этакой температуры бывает достаточно, правда, на грани, а для центральной – термоустойчивости явно маловато.

Утеплительные элементы из пенополистирола

Всем известный пенополистирол (в обиходе его чаще называют пенопластом) очень широко применяется для самых разных видов термоизоляционных работ. Не является исключением и утепление труб – для этого из пенопласта изготавливаются специальные детали.

Обычно это полуцилиндры (для труб больших диаметров могут быть сегменты в треть длины окружности, по 120°), которые для сборки в единую конструкцию оснащаются замковым соединением по типу «шип-паз». Такая конфигурация позволяет полностью, по всей поверхности трубы, обеспечить надёжную термоизоляцию, без остающихся «мостиков холода».

В повседневной речи такие детали получили название «скорлупы» — за явное сходство с ней. Выпускается множество ее типов, под различный внешний диаметр утепляемых труб и разную толщину термоизоляционного слоя. Обычно длина деталей 1000 или 2000 мм.

Для изготовления используется пенополистирол типа ПСБ–С различных марок – от ПСБ–С-15 до ПСБ–С-35. Основные параметры этого материала приведены в таблице ниже:

Оцениваемые параметры материала Марка пенополистирола
ПСБ-С-15У ПСБ-С-15 ПСБ-С-25 ПСБ-С-35 ПСБ-С-50
Плотность (кг/м³) до 10 до 15 15,1 ÷ 25 25,1 ÷ 35 35,1 ÷ 50
Прочность на сжатие при 10% линейной деформации (МПа, не менее) 0.05 0.06 0.08 0.16 0.2
Предел прочности при изгибе (МПа, не менее) 0.08 0.12 0.17 0.36 0.35
Теплопроводность в сухом состоянии при температуре 25°С (Вт /(м×°К)) 0,043 0,042 0,039 0,037 0,036
Водопоглощение за 24 часа (% по объему, не более) 3 2 2 2 2
Влажность (%, не более) 2.4 2.4 2.4 2.4 2.4

Достоинства пенопласта, как утеплительного материала известны давно:

  • Он обладает низким коэффициентом теплопроводности.
  • Малый вес материала существенно упрощает утеплительные работы, для которых не требуется никаких специальных механизмов или приспособлений.
  • Материал биологически инертен – он не будет питательной средой для образования плесени или грибка.
  • Влагопоглощение – незначительно.
  • Материал легко поддается резке, подгонке под нужный размер.
  • Пенопласт химически инертен, абсолютно безопасен для стенок труб, из какого материала они ни были бы изготовлены.
  • Одно из ключевых достоинств – пенопласт относится к наиболее недорогим утеплителям.

Однако, немало у него и недостатков:

  • Прежде всего — это низкий уровень пожарной безопасности. Материал нельзя назвать негорючим и не распространяющим пламя. Именно поэтому при его использовании для утепления наземных трубопроводов обязательно следует оставлять пожарные разрывы.
  • Материал не обладает эластичность, и его удобно применять лишь на прямых участках трубы. Правда, можно подыскать и специальные фигурные детали.

  • Пенопласт не относится к прочным материалам – он легко поддается разрушению под внешним воздействием. Негативно на него действует и ультрафиолетовое излучение. Одним словом, надземные участки трубы, утепленные пенополистирольной скорлупой, обязательно потребуют дополнительной защиты в виде металлического кожуха.

Обычно в магазинах, где продается пенопластовая скорлупа, предлагают и листы оцинковки, нарезанные в нужный размер, соответствующий диаметру утеплителя. Можно использовать и алюминиевую оболочку, хотя она, безусловно, намного дороже. Листы могут закрепляться саморезами или хомутами – получающийся кожух создаст одновременно антивандальную, противоветровую, гидроизоляционную защиту и преграду от солнечного света.

  • И все же даже не это главное. Верхний предел нормальных для эксплуатации температур – всего в районе 75°С, после чего может начаться линейная и пространственная деформация деталей. Как ни крути, для отопления этого значения может и не хватить. Наверное, есть смысл поискать более надежный вариант.

Утепление труб минеральной ватой или изделиями на ее основе

Самый «древний» способ термоизоляции внешних трубопроводов – с использованием минеральной ваты. Он, кстати, и самый бюджетный, если нет возможности приобрети пенопластовую скорлупу.

Для термоизоляции трубопроводов используют различные виды минеральной ваты – стекловату, каменную (базальтовую) и шлаковую. Шлаковата – наименее предпочтительна: она, во-первых, наиболее активно впитывает влагу, а во-вторых, ее остаточная кислотность весьма разрушительно может действовать на стальные трубы. Даже дешевизна этой ваты нисколько не оправдывает рисков ее применения.

А вот минеральная вата на основе базальтовых или стеклянных волокон подойдет в полной мере. У нее хорошие показатели термического сопротивления теплопередаче, высокая химическая устойчивость, материал эластичен, и его легко укладывать даже на сложные участки трубопроводов. Еще одно достоинство – можно быть, в принципе, совершенно спокойным в плане пожаробезопасности. Разогреть минеральную вату до степени воспламенения в условиях наружной теплотрассы – практически нереально. Даже воздействие открытого пламени не станет причиной распространения возгорания. Именно поэтому минвату и применяют для заполнения пожарных разрывов при использовании других утеплителей труб.

Главный недостаток минеральной ваты – высокая впитываемость воды (базальтовая в меньшей степени подвержена этому «недугу»). Значит, любой трубопровод потребует обязательной защиты от воздействия влаги. Кроме того, структура ваты нестойка к механическим воздействиям, легко разрушается, и ее следует защитить прочным кожухом.

Обычно используют прочную полиэтиленовую пленку, которой надёжно укутывают слой утепления, с обязательным перехлестом полос на 400 ÷ 500 мм, а затем сверху все это закрывается металлическими листами – точно по аналогии с пенополистирольной скорлупой. В качестве гидроизоляции также может использоваться рубероид – при этом будет достаточно 100 ÷ 150 мм нахлеста одной полосы на другую.

Существующими ГОСТами определена толщина защитных металлических покрытий для открытых участков трубопроводов при любом типе используемых термоизоляционных материалов:

Материал защитного покровного слоя Минимальная толщина металла, при внешнем диаметре изоляции
350 и менее Свыше 350 и до 600 Свыше 600 и до 1600
Ленты и листы из нержавейки 0.5 0.5 0.8
Листы из тонколистовой стали, оцинкованные или с полимерным покрытием 0.5 0.8 0.8
Листы алюминиевые или из алюминиевых сплавов 0.3 0.5 0.8
Ленты алюминиевые или из алюминиевых сплавов 0.25 - -

Таким образом, несмотря на кажущуюся недорогую цену самого утеплителя, его полноценная укладка потребует немалых дополнительных затрат.

Минеральная вата для утепления трубопроводов может выступать и в ином качестве – она служит материалом для изготовления готовых термоизоляционных деталей, по аналогии с цилиндрами из пенополиэтилена. Причем такие изделия выпускаются как для прямых участков трубопроводов, так и для поворотов, тройников и т.п.

Обычно такие утеплительные детали изготавливаются из наиболее плотной – базальтовой минеральной ваты, имеют внешнее фольгированное покрытие, которое сразу снимает проблему гидроизоляции и повышает эффективность утепления. Но вот от внешнего кожуха все равно уйти не удастся – тонкий слой фольги от случайного или намеренного механического воздействия не защитит.

Утепление теплотрассы пенополиуретаном

Один из самых эффективных и безопасных в эксплуатации современных утеплительных материалов – это пенополиуретан. У него – масса всевозможных достоинств, поэтому материал используют практически на любых конструкциях, требующих надежного утепления.

Каковы особенности пенополиуретана — утеплителя?

Пенополиуретан для утепления трубопроводов может быть применен в различных видах.

  • Широко используется ППУ-скорлупа, обычно имеющая внешнее фольгированное покрытие. Она может быть разборная, состоящая из полуцилиндров с пазо-гребневыми замками, либо, для труб небольшого диаметра – с разрезом по длине и специальным клапаном с самоклеящейся тыльной поверхностью, который существенно упрощает монтаж изоляции.

  • Еще один способ термоизоляции теплотрассы пенополиуретаном – это напыление его в жидком виде с помощью специального оборудования. Создающийся слой пены после полного отвердевания становится отменным утеплителем. Особенно удобна подобная технология на сложных развязках, поворотах труб, в узлах с запорно-регулировочной арматурой и т.п.

Достоинство подобной технологии еще и в том, что благодаря отменной адгезии пенополиуретанового напыления с поверхностью труб, создается отличная гидроизоляция и антикоррозионная защита. Правда, сам пенополиуретан также требует обязательной защиты – от ультрафиолетовых лучей, поэтому без кожуха опять обойтись не удастся.

  • Ну а если требуется прокладка достаточно длинной теплотрассы, то, наверное, самым оптимальным выбором станет использование предизолированных (предварительно изолированных) труб.

По сути, такие трубы представляют собой многослойную конструкцию, собранную в заводских условиях:

— Внутренний слой – это, собственно, сама стальная труба требуемого диаметра, по которой и осуществляется перекачка теплоносителя.

— Внешнее покрытие – защитное. Оно может быть полимерным (для прокладки теплотрассы в толще грунта) либо металлическим оцинкованным – то, что требуется для открытых участков трубопровода.

— Между трубой и кожухом залит монолитный, бесшовный слой пенополиуретана, выполняющего функцию эффективной термоизоляции.

С обеих оконечностей трубы оставлен монтажный участок для проведения сварочных работ при сборке теплотрассы. Его длина рассчитана таким образом, что тепловой поток от сварочной дуги не повредит пенополиуретановой прослойки.

После проведения монтажа оставшиеся не заизолированными участки грунтуют, закрывают пенополиуретановой скорлупой, а затем – металлическими поясами, сравнивая покрытие с общим внешним кожухом трубы. Нередко именно на таких участках организуют пожарные разрывы – их плотно заполняют минватой, затем гидроизолируют рубероидом и все так же закрывают сверху стальным или алюминиевым кожухом.

Стандартами установлен определенный сортамент таких сэндвич-труб, то есть имеется возможность приобрести изделия нужного условного диаметра с оптимальной (обычной или усиленной) термоизоляцией.

Наружный диаметр стальной трубы и минимальная толщина ее стенки (мм) Размеры оболочки из тонколистовой оцинкованной стали Расчетная толщина термоизоляционного слоя пенополиуретана (мм)
номинальный внешний диаметр (мм) минимальная толщина стального листа (мм)
32 × 3,0 100; 125; 140 0.55 46,0; 53,5
38 × 3,0 125; 140 0.55 43,0; 50,5
45 × 3,0 125; 140 0.55 39,5; 47,0
57 × 3,0 140 0.55 40.9
76 × 3,0 160 0.55 41.4
89 × 4,0 180 0.6 44.9
108 × 4,0 200 0.6 45.4
133 × 4,0 225 0.6 45.4
159 × 4,5 250 0.7 44.8
219 × 6,0 315 0.7 47.3
273 × 7,0 400 0.8 62.7
325 × 7,0 450 0.8 61.7

Производители предлагают такие сэндвич-трубы не только для прямых участков, но и для тройников, поворотов, компенсаторов и т.п.

Стоимость подобных предизолированных труб – достаточно высока, но зато с их приобретением и монтажом решается сразу целый комплекс проблем. Так что такие затраты видятся вполне оправданными.

Видео: процесс производства предизолированных труб

Утеплитель – вспененный каучук

Очень популярными в последнее время становятся термоизоляционные материалы и изделия из синтетического вспененного каучука. Этот материал имеет целый ряд достоинств, которые выводят его на лидерские позиции в вопросах утепления трубопроводов, в том числе не только теплотрасс, но и более ответственных – на сложных технологических линиях, в машино-, авиа- и судостроении:

  • Вспененный каучук – очень эластичен, но в то же время обладает большим запасом прочности на разрыв.
  • Плотность материала – всего от 40 до 80 кг/м³.
  • Низкий коэффициент теплопроводности обеспечивает очень эффективную термоизоляцию.
  • Материал со временем не дает усадки, полностью сохраняя свою первоначальную форму и объем.
  • Вспененный каучук трудновоспламеняем и обладает свойством быстрого самозатухания.
  • Материал химически и биологически инертен, в нем никогда не появляется ни очагов плесени или грибка, ни гнезд насекомых или грызунов.
  • Важнейшее качество – практически абсолютная водо- и паронепроницаемость. Таким образом, утеплительный слой сразу становится и отличной гидроизоляцией для поверхности трубы.

Такая термоизоляция может выпускаться в виде полых трубок с внутренним диаметром от 6 и до 160 мм и толщиной слоя утепления от 6 до 32 мм, или же в форме листов, которым зачастую с одной из сторон придаётся функция «самоклейки».

Наименование показателей Значения
Длина готовых трубок, мм: 1000 или 2000
Цвет черный или серебристый, в зависмости от типа защитного покрытия
Температурный диапазон применения: от - 50 до + 110 °С
Теплопроводность, Вт/(м ×°С): λ≤0,036 при температуре 0°С
λ≤0,039 при температуре +40°С
Коэффициент сопротивления паропроницанию: μ≥7000
Степень пожароопасности Группа Г1
Допустимое изменение длины: ±1,5%

Но для расположенных на открытом воздухе теплотрасс особо удобны готовые утеплительные элементы, изготовленные по технологии «Armaflex ACE», имеющие специальное защитное покрытие «ArmaChek».

Покрытие «ArmaChek» может быть нескольких типов, например:

  • «Arma-Chek Silver» — представляет собой многослойную оболочку на основе ПВХ, имеющую серебристое отражающее напыление. Такое покрытие обеспечивает отличную защиту изоляции и от механических воздействий, и от ультрафиолетовых лучей.
  • Черное покрытие «Arma-Chek D» имеет стекловолоконную высокопрочную, но сохраняющую отличную гибкость основу. Это – отличная защита от всех возможных химических, погодных, механических воздействий, которая сохранит трубу отопления в неприкосновенности.

Обычно такие изделия по технологии «ArmaChek» имеют самоклеящиеся клапаны, герметично «запечатывающие» утеплительный цилиндр на теле трубы. Выпускаются и фигурные элементы, позволяющие проводить монтаж на сложных участках теплотрассы. Умелое использование такой термоизоляции позволяет быстро и надежно ее смонтировать, не прибегая к созданию дополнительного внешнего защитного кожуха — в нем просто нет необходимости.

Единственное, наверное, что тормозит широкое применение таких термоизоляционных изделий для трубопроводов – пока еще запредельно высокая цена на настоящую, «брендовую» продукцию.

Новое направление в утеплении – теплоизоляционная краска

Нельзя пропустить и еще одну современную технологию утепления. И о ней тем более приятно говорить, так как она является разработкой российских ученых. Речь идет о керамическом жидком утеплителе, который еще известен, как теплоизоляционная краска.

Это, безо всякого сомнения, «пришелец» из сферы космических технологий. Именно в этой научно-технической отрасли вопросы термоизоляции от критически низких (в открытом космосе) или высоких (при запуске кораблей и приземлении спускаемых аппаратов) стоят особенно остро.

Термоизоляционные качества сверхтонких покрытий кажутся просто фантастическими. Одновременно такое покрытие становится отменно гидро- и пароизоляцией, защитой трубы от всех возможных внешних воздействия. Ну а сама теплотрасса принимает ухоженный, приятный глазу вид.

Сама краска представляет собой суспензию из микроскопических, заполненных вакуумом силиконовых и керамических капсул, взвешенных в жидком состоянии в специальном составе, включающем акриловые, каучуковые и иные компоненты. После нанесения и высыхания состава на поверхности трубы образуется тонкая эластичная пленка, обладающая выдающимися термоизоляционными качествами.

Наименования показателей Единица измерения Величина
Цвет краски белый (может быть изменен под заказ)
Внешний вид после нанесения и полного застывания матовая, ровная, однородная поверхность
Эластичность плёнки при изгибе мм 1
Адгезия покрытия по силе отрыва от окрашенной поверхности
- к бетонной поверхности МПа 1.28
- к кирпичной поверхности МПа 2
- к стали МПа 1.2
Стойкость покрытия к воздействию перепада температур от -40 °С до + 80 °С без изменений
Стойкость покрытия к воздействию температуры +200 °С за 1 ,5 часа пожелтения, трещин, отслоений и пузырей нет
Долговечность для бетонных и металлических поверхностей в умеренно-холодном климатическом районе (Москва) лет не менее 10
Теплопроводность Вт/м °С 0,0012
Паропроницаемость мг/м × ч × Па 0.03
Водопоглощение за 24 часа % по объёму 2
Температурный диапазон эксплуатации °С от - 60 до + 260

Такое покрытие не потребует дополнительных защитных слоев – оно достаточно прочное, чтобы самостоятельно справиться со всеми воздействиями.

Реализуется такой жидкий утеплитель в пластиковых банках (вёдрах), как и обычная краска. Есть несколько производителей, и среди отечественных можно особо отметить марки «Броня» и «Корунд».

Наносить такую термокраску можно путем аэрозольного напыления или же привычным способом – валиком и кистью. Количество слоев зависит от условий эксплуатации теплотрассы, климатического региона, диаметра труб, средней температуры перекачиваемого теплоносителя.

Многие специалисты полагают, что подобные утеплители со временем заменять привычные термоизоляционные материалы на минеральной или органической основе.

Видео: презентация сверхтонкой термоизоляции марки «Корунд»

Какая толщина утепления теплотрассы необходима

Подводя итог по обзору использующихся для термоизоляции труб отопления материалов, можно эксплуатационные показатели наиболее популярных из них свети в таблицу – для наглядности сравнения:

Термоизоляционный материал или изделие Средняя плотность в готовой конструкции, кг/м3 Теплопроводность теплоизоляционного материала (Вт/(м×°С)) для поверхностей с температурой (°С) Диапазонт рабочих температур, °С Группа горючести
20 и выше 19 и ниже
Плиты минераловатные прошивные 120 0,045 0,044 ÷ 0,035 От - 180 до + 450 для матов, на ткани, сетке, холсте из стекловолокна; до + 700 - на металлической сетке Негорючие
150 0,05 0,048 ÷ 0,037
Плиты теплоизоляционные из минеральной ваты на синтетическом связующем 65 0.04 0,039 ÷ 0,03 От - 60 до + 400 Негорючие
95 0,043 0,042 ÷ 0,031
120 0,044 0,043 ÷ 0,032 От - 180 + 400
180 0,052 0,051 ÷ 0,038
Теплоизоляционные изделия из вспененного этиленполипропиленового каучука «Аэрофлекс» 60 0,034 0,033 От - 55 до + 125 Слабогорючие
Полуцилиндры и цилиндры минераловатные 50 0,04 0,039 ÷ 0,029 От - 180 до + 400 Негорючие
80 0,044 0,043 ÷ 0,032
100 0,049 0,048 ÷ 0,036
150 0,05 0,049 ÷ 0,035
200 0,053 0,052 ÷ 0,038
Шнур теплоизоляционный из минеральной ваты 200 0,056 0,055 ÷ 0,04 От - 180 до + 600 в зависимости от материала сетчатой трубки В сетчатых трубках из металлической проволоки и нити стеклянной - негорючие, остальные слабогорючие
Маты из стеклянного штапельного волокна на синтетическом связующем 50 0,04 0,039 ÷ 0,029 От - 60 до + 180 Негорючие
70 0,042 0,041 ÷ 0,03
Маты и вата из супертонкого стеклянного волокна без связующего 70 0,033 0,032 ÷ 0,024 От - 180 до + 400 Негорючие
Маты и вата из супертонкого базальтового волокна без связующего 80 0,032 0,031 ÷ 0,024 От - 180 до + 600 Негорючее
Песок перлитовый, вспученный, мелкий 110 0,052 0,051 ÷ 0,038 От - 180 до + 875 Негорючие
150 0,055 0,054 ÷ 0,04
225 0,058 0,057 ÷ 0,042
Теплоизоляционные изделия из пенополистирола 30 0,033 0,032 ÷ 0,024 От - 180 до + 70 Горючие
50 0,036 0,035 ÷ 0,026
100 0,041 0,04 ÷ 0,03
Теплоизоляционные изделия из пенополиуретана 40 0,030 0,029 ÷ 0,024 От - 180 до + 130 Горючие
50 0,032 0,031 ÷ 0,025
70 0,037 0,036 ÷ 0,027
Теплоизоляционные изделия из пенополиэтилена 50 0,035 0,033 От - 70 до + 70 Горючие

Но наверняка пытливый читатель спросит: а где ответ на один из основных возникающих вопросов – какая же должна быть толщина утеплителя?

Вопрос этот – достаточно сложный, и однозначного ответа на него нет. При желании можно воспользоваться громоздкими формулами расчетов, но они, наверное, понятны только квалифицированным специалистам-теплотехникам. Однако, не все так страшно.

Производители готовых термоизоляционных изделий (скорлуп, цилиндров и т.п.) обычно закладывают необходимую толщину, рассчитанную для конкретного региона. А если применяется минераловатный утеплитель, то можно воспользоваться данными таблиц, которые приведены в специальном Своде Правил, который разработан именно для термоизоляции трубопроводов и технологического оборудования. Этот документ несложно найти в сети, задав поисковый запрос «СП 41-103-2000».

Вот, к примеру, таблица из этого справочника, касающаяся надземного размещения трубопровода в Центральном регионе России, при использовании матов из стеклянного штапельного волокна марки М-35, 50:

Наружный
диаметр
трубопровода,
мм
Тип труборовода отопления
подача обратка подача обратка подача обратка
Усредненный температурный режим теплоносителя, °С
65 50 90 50 110 50
Требуемая толщина изоляции, мм
45 50 50 45 45 40 40
57 58 58 48 48 45 45
76 67 67 51 51 50 50
89 66 66 53 53 50 50
108 62 62 58 58 55 55
133 68 68 65 65 61 61
159 74 74 64 64 68 68
219 78 78 76 76 82 82
273 82 82 84 84 92 92
325 80 80 87 87 93 93

Аналогичным образом можно найти нужные параметры и для других материалов. Кстати, существенно превышать указанную толщину тот же Свод Правил не рекомендует. Мало того, определены и максимальные значения утеплительного слоя для трубопроводов:

Наружный диаметр трубопровода, мм Предельная толщина слоя термоизоляции, мм
температура 19 ° С и ниже температура 20 ° С и более
18 80 80
25 120 120
32 140 140
45 140 140
57 150 150
76 160 160
89 180 170
108 180 180
133 200 200
159 220 220
219 230 230
273 240 230
325 240 240

Однако, не стоит забывать об одном важном нюансе. Дело в том, что любой утеплитель с волокнистой структурой со временем неизбежно дает усадку. А это значит, что по прошествии какого-то срока его толщины может стать недостаточно для надёжной термоизоляции теплотрассы. Выход один – еще при монтаже утепления сразу учитывать эту поправку на усадку.

Для расчета можно применить такую формулу:

Н = ((D + h ) : (D + 2 h )) × h × Kc

Н – толщина слойя минваты с учетом поправки на уплотнение.

D – внешний диаметр трубы, подлежащей утеплению;

h –требуемая толщина утепления по данным таблицы Свода Правил.

Кс – коэффициент усадки (уплотнения) волокнистого утеплителя. Является рассчитанной константой, значение которой можно взять из расположенной ниже таблицы:

Теплоизоляционные материалы и изделия Коэффициент уплотнения Kc.
Маты минераловатные прошивные 1.2
Маты теплоизоляционные «ТЕХМАТ» 1,35 ÷ 1,2
Маты и холсты из супертонкого базальтового волокна при укладке на трубопроводы и оборудование условным проходом, мм:
Ду 3
1,5
Ду ≥ 800 при средней плотности 23 кг/м3 2
̶ то же, при средней плотности 50-60 кг/м3 1,5
Маты из стеклянного штапельного волокна на синтетическом связующем марки:
М-45, 35, 25 1.6
М-15 2.6
Маты из стеклянного штапельного волокна «URSA» марки:
М-11:
̶ для труб с Ду до 40 мм 4,0
̶ для труб с Ду от 50 мм и выше 3,6
М-15, М-17 2.6
М-25:
̶ для труб с Ду до 100 мм 1,8
̶ для труб с Ду от 100 до 250 мм 1,6
̶ для труб с Ду свше 250 мм 1,5
Плиты минераловатные на синтетическом связующем марки:
35, 50 1.5
75 1.2
100 1.10
125 1.05
Плиты из стеклянного штапельного волокна марки:
П-30 1.1
П-15, П-17 и П-20 1.2

В помощь заинтересованному читателю, ниже размещен специальный калькулятор, в котором уже заложено указанное соотношение. Стоит ввести запрашиваемые параметры – и сразу получить требуемую толщину минераловатного утепления с учетом поправки.

ИЗОЛЯЦИЯ ТЕПЛОВЫХ СЕТЕЙ

В настоящее время для изоляции тепловых сетей наиболее часто применяются минеральная вата, пенополиуретан (ППУ), пенополиэтилен и другие вспененные полимерные теплоизоляционные материалы и штучные изделия из легких бетонов. Минераловатные утеплители обладают низкой теплопроводностью в сухом состоянии. Но из-за нарушений условий транспортировки, хранения на стройплощадке, монтажа в условиях повышенной влажности, неаккуратного крепления, повреждения парозащитной пленки минеральная вата теряет свои теплозащитные свойства, деформируется, оседает, что приводит к необходимости ремонта и замены теплоизоляционного материала. Кроме того, ни одна из минеральных ват, в то числе базальтовая вата, не годятся для утепления труб с температурой теплоносителя выше 250°С, так как происходит разложение пропитывающего состава. Применяемая изоляция из ППУ, в основном, пригодна при температуре теплоносителя до 150°С. При повреждении гидрозащиты и попадания воды ППУ разлагается. Штучные теплоизоляционные материалы, способные обеспечивать надежную тепловую защиту трубопроводов длительное время и обладающие необходимой термостойкостью, изготавливаются в виде скорлуп из перлитобетона, пеностекла и других неорганических материалов, имеют достаточно высокую стоимость и требуют изготовления в заводских условиях. К более дешевым теплоизоляционным материалам относится неавтоклавный монолитный пенобетон естественного твердения - разновидность легкого ячеистого бетона, получаемого в результате твердения раствора, состоящего из цемента, воды и поверхностно-активного вещества, или просто - пены. Пена обеспечивает необходимое содержание воздуха в растворе и его равномерное распределение по всей массе в виде мелких замкнутых ячеек, что придает материалу теплоизоляционные свойства и влагостойкость. Пенобетон обладает высокой адгезией к металлу и надежно защищает металл от наружной коррозии. Коэффициент линейного расширения пенобетона сопоставим с коэффициентом линейного расширения стальной трубы. Пенобетон можно применять для теплоизоляции трубопроводов, оборудования, газоходов и воздуховодов, расположенных как в зданиях, так и на открытом воздухе в непроходных каналах и при бесканальной прокладке с температурой теплоносителя от минус 150°С до плюс 600°С, в том числе трубопроводов тепловых сетей при новом строительстве и ремонтных работах.

При повреждении гидрозащиты пенобетон может набрать до 22-25% воды, которая впоследствии испаряется. При этом пенобетон, вследствие реакции гидратации, становится прочнее и сохраняет свои теплозащитные свойства.

Технология монолитного неавтоклавного пенобетона предполагает использование мобильных комплексов, позволяющих производить непосредственно на объекте теплоизоляционный пенобетон средней плотностью 150 - 200 кг/м3 с заливкой его в межтрубное пространство с последующим твердением в естественных условиях и формированием на поверхности трубопровода долговечного, термостойкого теплоизоляционного слоя. Установка для производства пенобетона состоит из: низкооборотного, исключающего разбивание пены, смесителя цикличного действия, пеногенератора для производства пены, компрессора и героторного насоса, обеспечивающего плавную подачу пенобетона с минимальным разрушением воздушных пузырьков.

Работу можно производить в зимний период при отрицательных температурах до -15°С. При этом нужно обеспечить положительную температуру пенобетона в течение первых 4-5 часов. Это достигается использованием при замесе горячей воды и утеплением места заливки.

Стоимость утепления труб монолитным пенобетоном значительно меньше, чем утепление минеральной ватой или пенополиуретаном.

Технология производства работ

Участки трубопровода очищаются от ржавчины, пыли, грязи, масляных пятен и остатков изоляции при ремонтных работах (рис. 1).

Рис. 1 Участок трубопровода

Расчетная толщина пенобетонного слоя создается при помощи центраторов (рис. 2) из полимерных материалов (при температуре теплоносителя не выше 120°С) или оцинкованной стали, устанавливаемых на изолируемых трубах из расчета 1 центратор на 1 кожух (оболочку).

Рис. 2 Центратор

На начальных и конечных участках трубопровода устанавливаются центраторы-заглушки (рис. 3). Кроме того, заглушки устанавливаются по длине трубопровода так, чтобы объем ограниченного участка соответствовал объему смесителя.

Рис. 3 Центратор-заглушка

На центраторы с помощью саморезов устанавливается кожух (оболочка) из оцинкованной стали или алюминия таким образом, чтобы заливочное отверстие располагалось вверху, строго по центру трубы (рис. 4). Заливочные отверстия, в дальнейшем, заделываются гидроизолирующим, но паропроницаемым материалом, с целью удаления избытка влаги из пенобетона.

Рис. 4 Металлический кожух (оболочка) с заливочными отверстиями.

Заливка пенобетона производится в 2 этапа. Первоначально заполняется небольшой объем ограниченного заглушками участка для контроля возможного протекания пенобетонной смеси в местах стыков кожуха с неподвижными опорами. Места протекания заделываются монтажной пеной. Контроль заполнения пространства между трубопроводом и металлическим кожухом (оболочкой) осуществляется визуально через заливочные отверстия. Аналогично заполняются вертикальные участки трубопровода (рис. 5).

Рис. 5 Вертикальный участок, подготовленный к заливке пенобетона.

Заливку на действующем трубопроводе необходимо производить при температуре теплоносителя не более 60°С. Если температура выше 60°С, необходимо снизить температуру до указанной на время твердения пенобетона (12-24 часа).

Толщина пенобетонного слоя зависит от температуры теплоносителя, температурной зоны (для наружных трубопроводов) и диаметра изолируемого трубопровода. Учитывая, что единица измерения изоляции трубопровода в нормах и расценках принята 1 м3 изоляции, а в расчетах часто оперируют диаметром трубопровода и его длиной, ниже приводится таблица соотношений 1 м3 изоляции с длиной изолируемого трубопровода. Таблица разработана для изоляции наружных трубопроводов в III температурной зоне пенобетоном плотностью 200 кг/м3 при 4-х температурах теплоносителя.

Диаметр изолируемого трубопровода, мм

Длина трубопровода (м пог.), изолируемого 1 м3 монолитного пенобетона марки D 200 при температуре теплоносителя:

Журнал «Ценообразование и сметное нормирование в строительстве», ноябрь 2009 г. № 11

Тепловые сети наружного пролегания или, как их ещё называют воздушные или надземные, прокладываются в случаях необходимости временного строительства теплотрассы (байбас) или в тех местах, где невозможно проложить тепловую сеть под землёй. К примеру, в сейсмоопасных районах. Такие тепловые сети удобны в эксплуатации, быстро строятся и отличаются от других видов тепловых сетей своей низкой стоимостью.

Тепловая изоляция наружных трубопроводов. Теплоизоляционные материалы.


В качестве материалов для изоляции наружных теплотрасс применяются.

1. Теплоизоляция труб минватой.


Достоинства:

- минеральная вата практически не гигроскопична - при правильно организованной вентиляции в случае намокания тут же отдаёт излишнюю влагу;
- обеспечивает стабильность своих физико-химических свойств на протяжении всего периода эксплуатации;
- обладает достаточно длительным сроком службы

Недостатки:

- во время намокания теряет свои эксплуатационные свойства;
- имеет слабую прочность и уступает по этой характеристике другим теплоизоляционным материалам.

2. Теплоизоляция труб напылением ППУ, использование ППУ-скорлуп.
Достоинства:

- возможность создавать сплошную изоляцию, без стыков;
- является достаточно эластичным материалом;
- обеспечивает возможность быстрого монтажа;
- является биологически нейтральным материалом, не подвержен гниению, устойчив к микроорганизмам и образованию плесени;
- обеспечивает стабильные теплоизоляционные качества в широком диапазоне температур.

Недостатки:

- является достаточно горючим материалом и при горении выделяет в окружающее пространства высокотоксичные вещества;
- для напыления требуется специальное оборудование;
- не «дышит».

В последние годы получил распространение метод теплоизоляции труб скорлупами ППУ, но они также нуждаются в дополнительной защите.



3. Теплоизоляция труб пенобетоном.

Достоинства:

- высокие теплоизоляционные качества, не уступающие ППУ изоляции;
- монолитность, благодаря которой обеспечивается хорошая антикоррозийная защита из-за отсутствия мостиков холода и невозможность расхищения материала;
- высокая технологичность, которая обеспечивает возможность прокладывания теплотрассы в любой местности;
- высокие адгезионные свойства.

Недостатки:

- ограничения по толщине изоляции;
- необходимость защиты высохшей поверхности защитным слоем.


4. Армированный бетон (армобетон).


Достоинства:

- обеспечивается эффективная теплоизоляция;
- отсутствует возможность хищений.

Недостатки:

- высокая стоимость;
- сложность проведения монтажных работ;
- достаточно высокая хрупкость материала.


Очевидно, что каждый вид теплоизоляционного слоя необходимо защищать. Если этого не сделать, то он со временем под воздействием неблагоприятных внешних факторов будет нарушаться. Практика показывает, что неизолированные теплозащитные слои быстро разваливаются, рассыпаются, сгнивают и приходится проводить работы по их замене. Именно поэтому, сегодня, активно применяется защитная изоляция труб наружная.

Гидроизоляция теплоизоляционного слоя. Обзор основных материалов.

Приходится констатировать, что практически все виды такой изоляции обладают большими недостатками:

- стеклоткан ь - крайне недолговечна , через 1 год теплотрассу, заизолированную стеклотканью, буквально не узнать. Ткань превращается в лохмотья, не говоря уже о полном отсутствии гидроизоляции и защиты от осадков;

- рубероид - более долговечен, чем стеклоткань, но чрезмерно пожароопасен , зачастую выгорают целые теплотрассы;

- оцинковка - отличный материал, долговечный и негорючий, но его очень быстро воруют . Если тепловая труба проходит вне черты города или вблизи дачных посёлков - то, как правило, оцинкованные листы исчезают на следующее утро после их установки.




По признанию большинства руководителей теплоснабжающих организаций, им приходится восстанавливать теплотрассы сотнями метров, что, в конечном счете, сказывается, как на качестве предоставляемых коммунальных услуг, так и на расходах, связанных с эксплуатацией тепловых сетей, которые превышают все мыслимые пределы.

Однако выход есть. Защита теплоизоляционного слоя наружных теплотрасс может быть выполнена с помощью термоусаживающийся . Она не горюча, имеет привлекательный внешний вид, не теряет своих защитных свойств под воздействием низких или высоких температур. В этом случае теплотрасса будет максимально эффективной и долговечной.

Тепловая изоляция трубопроводов тепловых сетей считается обязательной. Это относится также к водоснабжению и канализации. Ведь вещества или жидкости, проходящие по трубам, в холодное время года иногда замерзают или постепенно терять переносимую ими энергию. Не допустить этого помогают разные методы. О некоторых из них расскажет данная статья.

Пути решения проблемы

Защищать сети от перепадов внешней температуры и других воздействий можно следующим образом:

  1. Сделать обогрев с помощью нагревательных кабелей. Приспособления крепятся поверху бытовых трубопроводов, либо заводятся вовнутрь коллектора. Работают такие приборы от электросети.

Обратите внимание! В случае необходимости постоянного обогрева применяются саморегулирующие провода, которые отключаются и включаются автоматически, не допуская перегрева конструкций.

  1. Прокладывать коммуникации ниже уровня промерзания грунта. В результате они минимально контактируют с источниками холода.
  2. Использовать закрытые подземные лотки. Воздушное пространство здесь относительно изолированно, поэтому воздух вокруг трубопроводов остывает медленно и не дает замерзнуть их содержимому.
  3. Создать теплоизоляционный контур из пористых материалов. Такой метод защиты применяется чаще всего. При таком утеплении создается буферная зона, которая препятствует потере тепла горячих жидкостей и защищает их от замерзания.

Обогрев трубы греющим кабелем

В данной статье пойдет речь именно о последнем способе защиты коммуникаций.

Нормативная регуляция

Тепловая изоляция оборудования и трубопроводов основывается на СНиПе 2.04.14-88. В нем содержится информация о материалах и методах их использования, и излагаются требования к защитным контурам.

  • Независимо от температуры носителя, необходимо утеплять любую систему.
  • Для создания теплоизоляционного слоя одинаково применяются готовые и сборные конструкции.
  • Металлические части сетей должны защищаться от коррозии.
  • Желательно использовать многослойную конструкцию контура. В ее состав входит утеплитель, пароизоляция и защитный слой из плотного полимера, нетканого полотна или металла. Иногда монтируется армирующий контур, который не дает сминаться пористым материалам и предотвращает деформацию труб.

В документе содержатся формулы, по которым рассчитывается толщина каждого слоя многослойной конструкции.

На заметку! Большинство требований к тепловой изоляции трубопроводов касается магистральных сетей большой мощности. Однако при устройстве бытовых систем водоснабжения и канализации собственными силами, стоит ознакомиться с документом и учесть его рекомендации при проектировании и монтаже.

Согласно СНиП теплоизоляция является обязательной

Анализ утепляющих материалов

Полимерные утеплители

При выборе материалов для защиты трубопроводов от потери тепла, в первую очередь обращаются к вспененным полимерам. При их ассортименте можно выбрать утеплитель, который поможет решить поставленную задачу.

Во главе списка содержатся следующие составы для изоляции:

  • Пенополиэтилен. Материал характеризуется небольшой плотностью, пористостью и незначительной механической прочностью. Из него изготавливают цилиндры с разрезом, монтировать которые могут даже непрофессионалы. Недостатком трубной изоляции считается быстрый износ и слабая термостойкость.

Обратите внимание! Диаметр цилиндров должен соответствовать диаметру коллектора. В этом случае после монтажа кожухов они не могут сняться самопроизвольно.

  • Пенополистирол. Утеплитель отличается малой эластичностью и значительной прочностью. Производится в виде сегментов, напоминающих «скорлупу». Детали соединяются с помощью замков с шипами и пазами, в результате чего ликвидируются «мостики холода» и можно обойтись без дополнительного крепежа.
  • Пенополиуретан. Применяется для предустановленной теплоизоляции, хотя может использоваться и в быту. Выпускается в виде пены или «скорлупы», состоящей из двух или четырех сегментов. Способом напыления обеспечивается надежная герметичная теплоизоляция коммуникаций, отличающихся сложной конфигурацией.

Важно! Чтобы защитить пенополиуретановую пену от разрушения ультрафиолетом, ее покрывают краской или нетканым полотном с хорошей проницаемостью.

Трубчатая полиэтиленовая изоляция

Волокнистые материалы

Утеплители на основе минеральной ваты или ее производных популярны не менее (а иногда и более) полимерных материалов.

Изоляция из волокнистых утеплителей отличается такими достоинствами:

  • малым коэффициентом теплопроводности;
  • устойчивостью к действию кислот, масел, щелочей и других внешних факторов (нагреву, охлаждению);
  • способностью поддерживать заданную форму без помощи дополнительного каркаса;
  • умеренной стоимостью.

Обратите внимание! При устройстве тепловой изоляции оборудования и трубопроводов с помощью таких материалов следите, чтобы волокно не сжималось, и не подвергалось воздействию влаги.

Цилиндры из минеральной ваты, покрытые фольгой

Кожухи из полимерных и минераловатных утеплителей иногда покрывают стальной или алюминиевой фольгой. Такой тепловой экран снижает рассеивание тепла и отражает инфракрасное излучение.

Многослойные конструкции

Утепление по методу «труба в трубе» делается с помощью уже смонтированного теплозащитного кожуха. Задача монтажника в этом случае – правильно соединить детали в единую конструкцию. В конечном результате она выглядит таким образом:

  • Основа в виде металлической или полимерной трубы. Считается несущим элементом всего устройства.
  • Теплоизоляционный слой из вспененного полиуретана (ППУ). Он наносится по заливной технологии, когда специальная опалубка заполняется расплавленной массой.
  • Защитный кожух. Делается из труб из оцинкованной стали или полиэтилена. Первые предназначаются для прокладывания сетей на открытом пространстве, а вторая – в грунте по бесканальной технологии.
  • Помимо этого, в пенополиуретановый утеплитель часто закладываются медные проводники, предназначенные для дистанционного контроля над состоянием трубопровода, в том числе, и за целостностью теплоизоляции.

Трубы, которые поступают на место монтажа в уже собранном виде, соединяются методом сварки. Для сборки теплозащитных контуров используются специальные термоусадочные манжеты или накладные муфты из минеральной ваты, покрытые слоем фольги.

Многослойная конструкция с внешним покрытием из оцинкованной стали

Устройство теплоизоляции собственными силами

Технология устройства тепловой изоляции оборудования и трубопроводов зависит от того, прокладывается ли коллектор снаружи или монтируется в земле.

Утепление подземных сетей

Работы по монтажу и теплозащите заглубленных бытовых сетей проводятся в таком порядке:

  1. Уложите на дно траншеи канализационные лотки.
  2. Проложите трубы и сделайте тщательную герметизацию соединений.
  3. Наденьте на них теплоизоляционные кожухи и оберните конструкцию паронепроницаемой стеклотканью. Для фиксации используйте специальные полимерные хомуты.
  4. Закройте лоток крышкой и засыпьте его грунтом. Уложите в зазор между лотком и траншеей песчано-глиняную смесь и тщательно ее утрамбуйте.
  5. При отсутствии лотка трубы укладываются на уплотненный грунт, подсыпанный песчано-гравийной смесью.

Утепление труб с укладкой в лоток

Теплозащита наружного трубопровода

По СНиПу тепловая изоляция трубопроводов, расположенных на поверхности земли, осуществляется таким образом:

  1. Очистите все детали от ржавчины.
  2. Обработайте трубы антикоррозийным составом.
  3. Произведите монтаж полимерной «скорлупы» или оберните трубу рулонным утеплителем из минваты.

На заметку! Можно покрыть конструкцию слоем полиуретановой пены или нанести несколько слоев теплоизоляционной краски.

  1. Оберните трубу, как в предыдущем варианте. Кроме стеклоткани применяется также фольгированная пленка с полимерным армированием.
  2. Закрепите конструкцию с помощью стальных или пластиковых хомутов.

Выполнение требований к тепловой изоляции трубопроводов – залог того, что вы сделаете ее правильно. Это означает, что температура горячей воды сохранится по пути следования от котельной до дома, а холодная – не замерзнет даже в сильные морозы.

Видео-инструктаж: процесс утепления трубопровода

Если придерживаться стандартной схемы выполнения монтажных работ и применять подходящие материалы, ваш водопровод и канализация будут функционировать бесперебойно. Удачи!