Установка конденсатоотводчиков и обвязки. Принцип работы конденсатоотводчика


Конденсатоотводчик в переводе с английского языка «Steam trap» означает ловушка для пара. Основная функция его заключается в непрерывном удалении конденсата водяного пара из системы трубопроводов и теплотехнического (теплообменного) оборудования, использующего пар. Конденсат может образовываться при потере паром тепла в теплообменниках или в процессе нагрева системы трубопроводов и установок, когда часть пара осаждается на внутренних стенках системы, превращаясь в воду. Присутствие конденсата в системах пароснабжения приводит к гидроударам, потери тепловой мощности и понижению качества пара.
От качества работы конденсатоотводчика зависит не только бесперебойная работа пароконденсатной системы, но и ее безопасная эксплуатация. Подбор конденсатоотводчика основывается на рабочей температуре и давлении в системе, а также на количестве образующегося конденсата.

Основные требования к конденсатоотводчикам, следующие из их предназначения:

Бесперебойное и надежное отведение конденсата без потерь свежего пара.
. Своевременное отведение воздуха и газов в момент ввода в эксплуатацию паровой установки.
. Компактность.
. Стойкость к воздействию среды с абразивными включениями.
. Стойкость к гидроударам и долгий срок службы.
. Большая производительность при небольших перепадах давлений (например, дренаж паропровода при пусковых режимах).
. Отведение небольшого количества конденсата без потерь пара при большом перепаде давлений (например, дренаж паропровода в нормальных условиях эксплуатации).

Чтобы соответствовать таким многообразным требованиям существуют несколько типов конденсатоотводчиков, отличающихся по принципу работы:

Поплавковые (механические) конденсатоотводчики, которые управляются уровнем конденсата;
. термические конденсатоотводчики, которые управляются температурой конденсата;
. термодинамические конденсатоотводчики, включающиеся в работу в зависимости от состояния среды.

Механические (поплавковые) конденсатоотводчики.

Применяются для отведения конденсата из теплообменников, в также в системах, где требуется быстрое опорожнение от конденсата. Принцип работы механических конденсатоотводчиков основывается на разной плотности пара и конденсата, а также на усилии закрытия от поплавка.

Конденсат, наполняя внутреннюю камеру конденсатоотводчика, поднимает поплавок, открывая при этом выпускной клапан. При поступлении пара в конденсатоотводчик, уровень конденсата снижается, и выпускной клапан закрывается. осуществляют непрерывное отведение конденсата практически при температуре насыщения пара. Этот тип конденсатоотводчиков целесообразен для теплообменных аппаратов с большой поверхностью теплообмена и интенсивным образованием больших объемов конденсата.

Преимущества поплавковых конденсатоотводчиков:

Непрерывный вывод конденсата из системы при температуре насыщения.
. Отвод больших объемов конденсата без потери пара.
. Автоматический отвод воздуха и неконденсированный газов при пусковых и нормальных режимах работы.
. Отвод конденсата при малых и больших перепадах давлений, нестабильных значениях перепада давлений и расхода.
. Быстрое опорожнение системы.
. Ремонтопригодность. Замена регулятора на другой (с другим сечением) без демонтажа конденсатоотводчика.

Недостатки поплавковых конденсатоотводчиков:

Подвержены замерзанию при установке на улице (при отрицательных температурах).
. Большие габаритные размеры.
. Слабая устойчивость к гидроударам.

Термические конденсатоотводчики.

Принцип управления этого конденсатоотводчика основан на изменении температуры конденсата. Если температура внутри клапана становится ниже на несколько градусов температуры насыщенного пара, клапан - открывается; как только температура приближается к значению для соответствующего давления пара - закрывается. Характер работы термического конденсатоотводчика - дискретный (периодический). При выборе его исполнения и настроек можно варьировать значениями температуры открытия и закрытия клапана.
К этой группе конденсатоотводчиков относятся биметаллические и мембранно-капсульные конденсатоотводчики.

Биметаллические конденсатоотводчики.

Применяются в системах отопления и горячего водоснабжения.

Работа термодинамического конденсатоотводчика основана на аэродинамическом эффекте и термодинамических свойствах воды. Так как в потоке среды сумма статического давления (потенциальная энергия) и динамическое давление напора (кинетическая энергия) всегда величина постоянная, при снижении статического (манометрического) давления, динамическое давление возрастает и наоборот. Во время пуска системы когда корпус конденсатоотводчика наполняется холодным конденсатом, диск клапана прижимается вверх, что дает возможность конденсату беспрепятственно проходить через выпускные отверстия. По мере разогрева системы, температура конденсата возрастает и статическое давление, соответственно, повышается. В свою очередь, часть статического давления преобразуется в скорость в зазоре между седлом и диском, что приводит к опусканию диска и закрытию выпускных отверстий.

Преимущества термодинамических конденсатоотводчиков:

Компактность, простота конструкции и небольшой вес.
. Возможность применения в системах с перегретым паром.
. Монтаж в любом положении.
. Устойчивость к гидроударам, вибрации, коррозии и размораживанию.

Недостатки этого типа:

. «Пролетный пар» при срабатывании.
. Противодавление не должно превышать 60 % от давления в системе.
. Плохое отведение воздуха.
. Требуется периодическое обслуживание: открывать конденсатоотводчик для образования новой паровой подушки над пластиной клапана.
. При изменении погодных условий (ветер, дождь, снег и тд) увеличивается частота циклов срабатывания, соответственно уменьшается срок эксплуатации.

Итак, существенно отличаются по принципу работы и, соответственно, имеют применение в разных системах и условиях эксплуатации. Выбор оптимального типа зависит от таких рабочих параметров системы, как: химический состав, температура и давление рабочей среды, температура окружающей среды, пропускная способность системы и тд. Все эти параметры обозначены в опросном листе, который необходимо заполнить при заявке на подбор конденсатоотводчика специалистами нашей компании.

Грамотный подбор конденсатоотводчика обеспечивает не только бесперебойное и беспроблемное функционирование системы, но и оптимизации затрат в результате повышения энергоэффективности системы. Неправильный же подбор приводит к некорректной работе системы в целом и, соответственно, дополнительным расходам материальных средств.

Для корректной работы системы и правильности подбора (определения типа) можно обратиться к специалистам нашей компании, которые имеют большой опыт в применении конденсатоотводчиков в пароконденсатных системах и регулярно проходят обучение у ведущих производителей данного оборудования.

Будем рады ответить на вопросы любым удобным для вас способом!

Конденсатоотводчик - вид трубопроводной арматуры, предназначенный для автоматического отвода конденсата водяного пара из пароконденсатных систем. Конденсат в системах появляется в результате потери паром энергии в теплообменниках или при пусковом прогреве теплопроводов. Наличие конденсата в паровых трубопроводных системах приводит к гидроударам, снижению тепловой мощности и ухудшению качества пара. Известно, что использование конденсатоотводчиков в комплексе оборудования сохраняет до 20 % полезной энергии пара. Чтобы подобрать конденсатоотводчик, необходимо знать условия и режим эксплуатации теплосети, особенности используемого оборудования и характеристики самих конденсатоотводчиков. Под условиями эксплуатации теплосети мы понимаем колебания рабочего давления, а также противодавление на самих конденсатоотводчиках. Кроме того иногда требуется стойкость конденсатоотводиков к коррозии, гидроударам или замерзанию. Необходимо также учесть условия выпуска воздуха из системы во время включения теплового оборудования. Рассмотрим принцип работы трех основных типов конденсатоотводчиков.

Фото Обозначение Наименование Ду, мм Материал корпуса Рабочая среда Тип присоединения Цена, руб
10-50 нержавеющая сталь пар, конденсат под приварку 600-8000
Конденсатоотводчик термодинамический 15-25 нержавеющая сталь пар, конденсат муфтовый Под заказ
Конденсатоотводчик термодинамический 10-50 сталь пар, конденсат под приварку 700-4500
Конденсатоотводчик термодинамический 15-25 сталь пар, конденсат под приварку 1200-2600
Конденсатоотводчик термодинамический 10-32 сталь пар, конденсат цапковый 570-1530
Конденсатоотводчик термодинамический фланцевый 25-50 сталь пар, конденсат фланцевый 6000-9000
Конденсатоотводчик поплавковый фланцевый 15-65 сталь пар, воздух фланцевый Под заказ
Конденсатоотводчик термодинамический 15-50 чугун пар, вода, конденсат муфтовый 300-1200
Конденсатоотводчик поплавковый муфтовый 20-50 чугун пар, вода, конденсат муфтовый 2500-5000
Конденсатоотводчик термодинамический с обводом 15-50 чугун пар, вода, конденсат муфтовый 160-800
15-50 чугун насыщенный пар, воздух под давлением фланцевый Под заказ
15-100 сталь пар, конденсат фланцевый 9450-25500
Конденсатоотводчик термостатический 15-50 сталь пар, конденсат фланцевый 11300-13600
Конденсатоотводчик поплавковый 15-50 сталь пар, конденсат фланцевый 12200-25500
Конденсатоотводчик поплавковый регулируемый 15-50 сталь пар, конденсат фланцевый 14350-29400

Конденсатоотводчики термодинамические, принцип работы:

Схема

Термодинамические конденсатоотводчики являются наиболее простым и наиболее распространенным типом конденсатоотводчиков. Термодинамические конденсатоотводчики предназначены для паровых систем с малым или средним расходом конденсата. В основе принципа работы термодинамического конденсатоотводчика лежит разница скоростей прохождения пара и конденсата в зазоре между диском и седлом. При прохождении через конденсатоотводчик конденсата из-за его низкой скорости диск поднимается и пропускает конденсат. При прохождении через конденсатоотводчик пара скорость увеличивается, приводя к падению статического давления, и диск опускается на седло. Пар, находящийся над диском, благодаря большей площади контакта удерживает диск в закрытом положении. По мере конденсации пара давление над диском падает, и диск снова начинает подниматься, пропуская конденсат. Периодически конденсатоотводчики выпускают часть пара, поэтому, чтобы избежать энергопотерь, производители не выпускают термодинамические конденсатоотводчики больших диаметров.

Преимущества термодинамических конденсатоотводчиков:

  • Простая, надежная в эксплуатации, компактная конструкция, имеющая малый вес;
  • Относительно низкая цена устройства;
  • Конденсат удаляется сразу при попадании в конденсатоотводчик;
  • Регулировка конденсатоотводчика не требуется;
  • Допустимо использование в системах с высоким (средним) давлением и при перегретом паре;
  • Не разрушаются при замерзании, не обмерзают при установке в вертикальной плоскости (Внимание! Работа в вертикальном положении может привести к быстрому износу краев диска конденсатоотводчика);
  • Удобны в обслуживании и ремонте;
  • Нечувствительны к гидроударам;
  • Возможность определения нормальной работы по частоте ударов диска о седло;

Недостатки термодинамических конденсатоотводчиков:

  • Цикличность работы приводит к постоянным потерям пролетного пара;
  • Нестабильно работают при низком входном давлении и высоком противодавлении;
  • Есть риск запирания конденсатоотводчика воздухом в случае резкого увеличения давления при запуске системы (для решения данной проблемы рекомендуется использовать для обвязки вентили, а не шаровые краны);
  • При сбросе конденсата в атмосферу возможен высокий уровень шума;

Конденсатоотводчики термостатические (капсульные), принцип работы:

Принцип работы термостатического конденсатоотводчика основан на разности температур пара и конденсата. Чувствительным элементом и исполнительным механизмом термостатического конденсатоотводчика является термостат. В качестве термостата используются биметаллические пластины или капсулы с наполнителем, который при изменении температуры деформирует изнутри форму капсулы. Термостат имеет в нижней части седло, выполняющее функцию запорного механизма. В холодном состоянии между диском капсулы и седлом существует зазор, позволяющий конденсату, воздуху и другим неконденсируемым газам выходить из конденсатоотводчика. При нагреве термостат опускается на седло, препятствуя выходу пара. Особенность термостатических конденсатоотводчиков – необходимость доохлаждения конденсата на несколько градусов относительно температуры конденсации для открытия термостата. Таким образом данный тип конденсатоотводчика в большей или меньшей степени инерционен. Данный тип конденсатоотводчиков помимо отвода конденсата, позволяет также удалять из системы воздух и газы, то есть использоваться в качестве воздухоотводчика для паровых систем. Существуют три модификации термостатических капсул позволяющих отводить конденсат при температуре на 5°С, 10°С или 30°С ниже температуры парообразования. Этот тип конденсатоотводчика не замерзает, если за ним нет подъема конденсатной линии, и конденсат не зальет его при отключении пара.

Преимущества термостатических конденсатоотводчиков:

  • Компактная конструкция, малый вес, простота обслуживания;
  • Непрерывный отвод конденсата и неконденсируемых газов;
  • Пониженная температура конденсата на выходе устройства;
  • Пониженное давление в конденсатопроводе;
  • Бесшумная работа;
  • Большая производительность для своих размеров;
  • Возможна установка конденсатоотводчика в любом положении;
  • Возможность использования при высоких давлениях;

Недостатки термостатических конденсатоотводчиков:

  • При отказе закрывается седло;
  • Не работает при перегретом паре;
  • Чувствителен к гидроударам и резким колебаниям давления;
  • Чувствителен к размораживанию;
  • Срок службы ниже, чем у конденсатоотводчиков других типов;
  • Инертность в работе;
  • Ограничения по температуре окружающего воздуха – 25 о С;
  • Принцип работы (принцип действия) поплавковых конденсатоотводчиков основан на разнице плотности пара и конденсата. Исполнительным механизмом является шаровой поплавок или поплавок в виде перевернутого стакана. Поплавок соединен с выпускным клапаном посредством рычага. Конденсат поступает в корпус конденсатоотводчика и, наполняя его, поднимает поплавок, при этом открывая выпускной клапан. При пуске системы, в конденсатоотводчик поступает воздух, который беспрепятственно удаляется в конденсатную линию. Такие конденсатоотводчики обеспечивают непрерывный отвод конденсата и наиболее подходят для систем с большими поверхностями теплообмена и образованием больших объемов конденсата.

    Преимущества поплавковых конденсатоотводчиков:

    • Устойчив к внезапным колебаниям давления;
    • Высокая производительность (до 150 тонн конденсата в час!);
    • Надёжен в эксплуатации, устойчив к гидроударам;

    Недостатки поплавковых конденсатоотводчиков:

    • Низкая устойчивость к загрязнениям;
    • При поломке поплавка клапан постоянно будет закрыт, что может привести к разрыву трубопровода;
    • Возможно повреждение при замерзании;

    В корпусе поплавкового конденсатоотводчика при эксплуатации всегда должна быть вода (гидрозатвор). Потеря этого водяного уплотнения может привести к беспрепятственному выходу пара через конденсатоотводчик. Это может произойти при резком падении давления пара и как следствие – вскипанию конденсата. Чтобы этого избежать в системах, где возможны колебания давления, перед конденсатоотводчиком устанавливают обратный клапан. Поплавковый конденсатоотводчик может быть поврежден при замерзании. При установке поплавкового конденсатоотводчика на открытом воздухе необходимо использовать теплоизоляцию его корпуса.

(окончание, начало в № 3 "2001)

Свен Иверс, фирма «Gestra GmbH»

6. Структура расположения конденсатоотводчиков

6.1. Как правило, каждый теплообменник должен быть оборудован собственным конденсатоотводчиком (индивидуальный дренаж). Только таким образом обеспечивается безупречный дренаж каждого теплообменника. Если через один конденсатоотводчик (одновременное удаление влаги) будет осуществляться дренаж нескольких теплообменников, могут произойти сбои, поскольку из-за различия в размерах, длины трубопровода, нагрузки и т. д. возникает неодинаковое сопротивление. Это приводит в отдельных теплообменниках к большому или малому скоплению конденсата, а следовательно - к неравномерному нагреву (рис.1.).

Совершенно неправильно подключать конденсатоотводчики последовательно. На практике довольно часто встречается, когда отдельные конденсатоотводчики на теплообменнике неисправны и пропускают пар или, по ошибке, расширенный пар принимают за острый, в надежде удержать этот пар, дополнительно подключают еще один конденсатоотводчик в конденсатный сборно-распределительный трубопровод. В таком случае происходят сбои, ведущие к полной поломке агрегата.

У теплообменников с несколькими нагревательными регистрами или - как у многоярусного пресса - с несколькими нагревательными панелями, каждая панель должна обезвоживаться в отдельности. Тем самым предотвращается неравномерный нагрев прессуемого материала.

В случае, если индивидуальный дренаж не осуществим из-за дефицита площади или из-за высокой стоимости, лучше две или три пластины расположить серийно и такой ряд обслуживать одним конденсатоотводчиком. Рис. 2

6.2 Если в конденсатном трубопроводе предусмотрен байпас к отводчику, например, если теплообменник нельзя остановить, поскольку запуск идет через обводной канал, рекомендуется подключить отводчик в байпас, а не напрямую (рис. 3).

На левом рисунке разнообразного рода загрязнения попали в конденсатоотводчик. Его необходимо соответственно достаточно часто очищать.

На среднем изображении крупные примеси собираются перед вентилем и его можно время от времени очищать. Конденсатоотводчик загрязняется не так быстро.

То же самое касается правого рисунка. Здесь примеси выдуваются наружу и таким образом удаляются из агрегата. Незакрытый или негерметичный вентиль тотчас заметен из-за утечки пара на месте свободного выхода. При обезвоживании через вентиль, вентиль можно открыть на глаз на столько, сколько необходимо для процедуры дренажа.

6.3. В принципе, конденсатоотводчики располагаются таким образом, чтобы конденсат поступал к ним под уклоном и за конденсатоотводчиками под уклоном стекал. Если же конденсат должен быть поднят, на этот случай есть две альтернативы применения конденсатоотводчиков:

1. Установка конденсатоотводчиков в более низкой позиции.

Конденсат поднимается за конденсатоотводчиком. Теоретически, согласно всем принципам работы конденсатоотводчиков, это возможно. Заднее давление возрастает лишь на 1 бар с высотой подъема каждые 7 м, что необходимо учитывать при расчете установки конденсатоотводчиков. Но поскольку позади конденсатоотводчиков почти всегда возникает расширение пара, это приводит к двухфазовому течению в ведущем трубопроводе (пар и конденсат). В подъемном трубопроводе вследствие этого могут возникать нежелательные пульсации и опасные гидравлические удары. Поэтому настоятельно рекомендуется устанавливать в конденсатопроводе или же в конденсатном сборно-распределительном трубопроводе равный или более УП 40 компенсатор на самом нижнем уровне. Компенсатор должен быть сконструирован таким образом, чтобы в верхней части образовывалась воздушная или паровая подушка, которая не улетучивается и тем самым значительно амортизирует толчки ударов и с этим связанные шумы. Компенсатор воздействует в качестве амортизатора как воздушный колпак. См. рис. 4.

На паровых горизонтально расположенных трубчатых теплообменниках при прохождении пара через трубы не рекомендуется восхождение конденсата за конденсатоотводчиками. При дросселировании парового регулятора давление в обменнике падает, т. е. перед конденсатоотводчиком. Оно падает до тех пор, пока из-за противодавления - вследствие обратного водяного столба - конденсат не будет больше извлекаться. Включен регулятор - пар течет через охлажденный конденсат, что приводит к опасным гидравлическим ударам. Рекомендовано в этом случае собрать конденсат без давления на самом нижнем уровне и выкачать его наверх.

2. Установка конденсатоотводчиков в более высокой позиции (должна производиться только тогда, если другие возможности с точки зрения эксплуатации не осуществимы).

Смотря по нагрузке в подъемном трубопроводе перед конденсатоотводчиком, можно установить двухфазовый ток. Не будем подробно останавливаться на особых проблемах двухфазового течения. Но в общем стоит отметить, что и такая установка возможна, причем термодинамические конденсатоотводчики с пластинчатым клапаном, на основании их периодического принципа работы, не рекомендуются.

Рис. 5 демонстрирует, какими способами можно улучшить подачу конденсата вверх.

Часто дренаж производится так, как показано на первом рисунке. Он едва ли является оптимальным, например, при малом количестве конденсата, как это показано выше. Конденсат собирается только в горизонтально расположенном или с небольшим наклоном отрезке трубопровода, пока не образуется водяной затвор. Он конденсирует в подъемном трубопроводе имеющийся пар. На основании возникающего перепада давления конденсат вытесняется вверх. Это приводит к пульсациям, сила которых зависит от высоты и номинального параметра трубопровода. При небольшом количестве конденсата эти пульсации в общем не опасны.

Оптимальная установка изображена на правом рисунке. Здесь конденсат поступает в приемник (компенсатор). Вход в трубопровод, ведущий вверх, расположен ниже трубопровода, ведущего в резервуар. При таком положении образуется водяной затвор в резервуаре. Все давление приходится на водяную поверхность, которое, поскольку в восходящем трубопроводе образуется падение давления, выдавливает конденсат вверх. В горизонтально расположенном отрезке трубопровода конденсат не скапливается.

Аналогичная ситуация представлена на среднем рисунке. На месте приемника в качестве водяного мешка установлено колено трубы. В этом случае также образуется водяной затвор. Во всех трех случаях подача вверх может быть улучшена за счет регулировки конденсатоотводчиков на незначительный поток пара.

7. Дренаж паропроводов и паровая сушка

Выходящий из парового котла насыщенный пар устремляется через паропровод к потребителю. При этом тепло отдается внешней среде, и насыщенный пар становится влажным паром. При перегрузке котла вместе с паром может захватываться и вода. Слишком влажный пар приводит в теплообменнике к уменьшению теплопередачи или же в паропроводе - к кавитации/эрозии. Если трубопровод перекрыт, остаточный пар конденсирует. Конденсат остается в агрегате и способствует возникновению коррозии. Если паровой вентиль снова открыт, пар с большой скоростью устремляется через находящийся в трубопроводе холодный конденсат, что влечет за собой гидравлические удары. По этим причинам паропровод необходимо обезводить. Дренаж должен производиться при прямом или же лучше находящемся под незначительным наклоном трубопроводе каждые 80-100 м, перед каждым восходящим отрезком трубопровода и перед вентилями, редуцирующими паровое давление, а также в конце трубопровода. Для этого применяются конденсатоотводчики.

Для конденсатного трубопровода обычно достаточно условного прохода 20 мм, но с тем, чтобы конденсат достиг конденсатоотводчика и чтобы из-за большой скорости пара не был отброшен через стык, должен быть предусмотрен сборный штуцер соответствующего размера. Схема на рис. 6 показывает целесообразное расположение конденсатоотводчиков; в таблице приведены размеры.

К штуцеру подсоединен конденсатоотводчик. Преимущество этого состоит в том, что посторонние вещества оседают на дне штуцера. Таким образом, инородные примеси не попадают в конденсатоотводчик, тем самым избегается быстрое загрязнение оборудования. Время от времени посторонние примеси можно продуть. Нет необходимости при этом предусматривать продувочные вентили.

Часто, практически, достаточно закрытого пробкой или фланцевой крышкой выходного отверстия. Например, один раз в год они могут быть удалены и штуцер прочищен.

Наряду с выпавшим и собирающемся на дне трубы конденсатом, в паре находятся также влага во взвешенном состоянии. Ее нельзя удалить по-

средством дренажа. Если в работе требуется очень сухой и чистый пар, поскольку он, например, необходим для прямого вдувания в продукт, необходима сушка пара и его очищение. Для этого служат аппараты, которые монтируются прямо в паропровод, «паросепаратор» и «паровая сушка». Рис. 7.

Они не обладают подвижными деталями. Единственным функциональным органом является ведущий корпус, двухходовой гребной винт. Весь пар проходит по ведущему корпусу сначала по спирали вниз и раскручивается затем на 180 градусов.

Конденсатоотводчики используются для дренажа паропроводов, а так же для отвода конденсата от теплообменных устройств.

Конденсатоотводчики применяют для удаления конденсата, который образуется в паропроводе в результате тепловых потерь в окружающую атмосферу. Применение теплоизоляции частично решает проблему тепловых потерь, но полностью их не исключает. Следовательно, установка узлов отвода конденсата, на различных участках паропровода, необходима.

Узлы отвода конденсата предпочтительно устанавливать не менее чем через 30-50 м там, где паропровод имеет горизонтальные участки. Конденсатоотводчик, который установлен первым за котлом, необходимо установить с не менее чем 20 процентной пропускной способностью от производительности самого котла. Если паропровод имеет длину более 1000 м, то конденсатоотводчик должен иметь одинаковую пропускную способность с производительностью котла. Это необходимо для отвода конденсата в том случае, если имеет место унос котловой воды.

Перед всеми подъемами, на коллекторах и перед регулирующими клапанами, установка конденсатоотводчика принципиально необходима.

Осуществляется отвод конденсата при помощи карманов отстойников. Диаметры карманов равны диаметру труб вплоть до пятидесятого диаметра. Если диаметр паропровода превышает 50мм, то применяются карманы на один/два диаметра меньше. Необходимо карман-отстойник оборудовать сливным краном или заглушкой у нижней его части, для прочистки или продувки системы. Как правило, отстойники устанавливаются на некотором расстоянии от конденсатоотводчика, что бы избежать его засорения.

Узел отвода конденсата

Что бы защитить конденсатоотводчик от загрязнения, перед ним нужно поставить фильтр сетчатый, а что бы предотвратить заполнение конденсатом системы в случае прекращения подачи пара в паропровод, необходимо установить после конденсатоотводчика обратный клапан,а установленные на трубопроводе смотровые стекла, дают возможность контролировать правильную работу системы.

Удаление воздуха

Для того, что бы снизить негативное влияние воздуха, снижающего теплопередачу в теплообменных устройствах, на паропроводе устанавливают термостатические конденсатоотводчики, играющие роль автоматических воздушников. Они устанавливаются непосредственно около теплообменных устройств в верхней точке системы.

Для предотвращения образования вакуума в системе, возникающего вследствие охлаждения системы при ее отключении, наряду с термостатическими конденсатоотводчиками ("воздушниками"), осуществляют установку прерывателей вакуума. При охлаждении паропровода пар конденсируется и, разница в объемах появляющегося конденсата и пара дает эффект разрежения. Таким образом установка вакуумного прерывателя становится необходимостью, что бы не пострадали уплотнения установленного на паропроводе оборудования.

Редукционные станции

Для того, что бы получить пар необходимого давления, обязательно применение редукционных клапанов. Мы предлагаем вашему вниманию мембранные и пружинные редукционные клапаны. Отвод конденсата обязательно делать до редукционного клапана, дабы избежать гидроударов.

Фильтры

Если возраст трубопроводов достаточно приличный, то есть вероятность того, что пар, поступающий к потребителю, сильно загрязнен, м так как средняя скорость подачи пара в паропроводе составляет 15-60 м/с, то при таких скоростях, образовавшаяся грязь и окалина от котлов, может сильно повреждать как сам трубопровод, так и оборудование установленное на нем. Особенно может страдать регулирующая арматура, так как внутри клапанов, между седлом и запорным органом, скорость пара может достигать сотни метров в секунду. Поэтому, перед регулирующими клапанами просто необходима установка сетчатых фильтров и, желательно, что бы в сетке фильтра размер ячейки составлял - 0,25 мм.

В паровых системах, в отличии от водопроводов, фильтры нужно устанавливать строго сеткой вбок, по горизонтали, во избежании образования еще одного конденсатного кармана. В этом случае конденсат, скапливающийся в фильтре увлажняет пар и возникает вероятность появления конденсатных пробок.



Сепараторы пара

Для уменьшения эрозионной устойчивости трубопроводной арматуры и самого паропровода используют сепараторы пара. Это необходимо для того, что бы выделить из сухого пара влажный пар и значительную часть грязи, которые и являются причинами эрозии. Так как конденсатоотводчик срабатывает только на готовый конденсат, то применение сепараторов пара, удаляющих не нужные взвеси, стратегически необходимо. После сепарации, потребителю, подается уже качественный и сухой пар.

Вашему рассмотрению мы представляем центробежные сепараторы.

Центробежный принцип основан на закручивании пароводяной смеси, которая попадает в сепаратор через входной патрубок.

Так как частицы влаги в паре имеют более плотную структуру и обладают массой, то, под действием центробежной силы, они оседают пленкой на боковой стенке сепаратора. После того как эта пленка достигает отбойника в верхней части сепаратора, происходит ее срыв. Затем, вода, оказавшись в нижней части сепаратора пара, выводится через специально предусмотренное дренажное отверстие. На выходном патрубке уже получается сухой пар, свободный от водяной взвеси. Отсепарированная вода поступает в узел отвода конденсата, предусмотренный для того, что бы избежать потери пара. В верхней части сепаратора пара предусмотрено технологическое отверстие для установки автоматического воздушника. Сепараторы следует устанавливать в непосредственной близости от потребителя, регулирующей арматуры и приборов контроля за расходом. Гарантированное время эксплуатации таких сепараторов. как правило, больше времени эксплуатации трубопровода.

Предохранительные клапаны

Наша Компания представляет Вашему вниманию клапан предохранительный пружинный типоразмерами от 10 до 400 мм.

Предлагаем к рассмотрению полноподъемные предохранительные клапаны (ПРЕГРАН 495/496) и пропорциональные клапаны (Prescor Flamco, ПРЕГРАН 095А/095С/095/096/097).

Представленные клапаны могут различаться по типу уплотнений и их конструктивному исполнению.

Предохранительный клапан Prescor, благодаря конструкции диафрагмы, имеет высокую герметичность по штоку.

В свою очередь, клапан ПРЕГРАН 095/097 не является герметичным, так как имеет по штоку уплотнение металл/металл.

Выбор предохранительного клапана должен основываться на принятии во внимание уплотнений клапана и на его конструкционных особенностях.

Главным аспектом требований, применительно к предохранительным клапанам, нужно считать, помимо требуемого давления срабатывания клапана, еще и правильное направление отвода среды, подлежащей сбросу.

Предохранительный клапан для воды должен иметь из выходного патрубка отвод в канализационную систему, то есть вниз. Предохранительный паровой клапан, должен на выходном патрубке иметь отвод вверх, на крышу здания или в иное безопасное для людей место. В связи с этим нужно знать, что после срабатывания клапана и сброса пара, образуется конденсат, скапливающийся затем в выходном патрубке на выходе клапана. Вследствие этого возникает дополнительное давление, которое создает препятствие последующему срабатыванию клапана и сбросу пара при запланированном сбросном давлении.

Иными словами нужно учитывать, что при настройке предохранительного клапана на давление срабатывания 0,5 МПа и выходном трубопроводе, направленном вверх, заполненном водой метров на десять, давление сброса клапана предохранительного будет в районе 0,6 Мпа. В этом контексте следует понимать, что необходимо организовать систему дренажа выходного трубопровода, иначе, при не герметичном уплотнении клапана по штоку, вода может устремиться через крышку.

Установка предохранительного клапан а

____________________________________________________________________________________________________________________


Запорная арматура

То, что пар в трубопроводе движется с высокой скоростью, необходимо всегда учитывать при выборе запорной арматуры. Рекомендации европейских производителей по выбору диаметра паропровода могут существенно отличаться от рекомендаций российских производителей. Характерно то, что когда трубопроводная арматура закрыта, то перед ней образована пробка из конденсата. Опасность гидроудара возрастает при открытии запорной арматуры. Поэтому в как запорную арматуру на паропроводе совершенно рискованно применять шаровые краны. Самый лучший выход здесь, это применить вентиль запорно регулирующий седельчатый. Применение кранов шаровых иногда оправдывают тем, что они не требуют обслуживания в процессе эксплуатации. Но эта проблема уже давно решена, за счет того, что вместо вентилей седельчатых с сальниковой набивкой (тип KV16 / KV40), действительно требующей сервиса, можно поставить вентили запорные с сильфонным уплотнением, намного более долговечным.

Вентиль сильфонный стальной или чугунный (KV45/234A), подобно шаровому крану, в процессе эксплуатации не обслуживается, но при том, что открытие его может происходить плавно, значительно уменьшает вероятность возникновения гидроударов. Но есть технологические процессы, в которых важна резкая подача пара. Для таких случаев можно рассматривать шаровые краны BV16, BV17 или шаровые PEKOS типа Р0 (SSS). Ну и, естественно, перед тем как регулирующая или запорная арматура будет установлена, трубопровод, обязательно, должен быть продут и прощичен, для того, что бы не были повреждены рабочие органы оборудования шлаком или окалиной.

Регулирующие клапаны

Наша Компания предлагает Вам ознакомиться с достаточно большим выбором регулирующих клапанов.

Регулирующие клапаны имеют унифицированное присоединение, и на них могут быть установлены термостаты (регулятор температуры прямого действия), электроприводы (данный вариант может поставляться в комплекте с контроллером и датчиками для погодозависимого и ПИД-регулирования) или пневмоприводы (возможна установка пневмо- или электропневмопозиционеров, контроллеров, пневмошкафов). Более подробную информацию спрашивайте у инженеров нашей компании.


2.1. Конденсат рекомендуется отводить из теплообменников самотеком (рис.11)
2.2. Для работы конденсатоотводчика требуется определенный перепад давления (рис. 12)
2.3. Если после конденсатоотводчика конденсатная линия поднимается, то перепад давления на конденсатоотводчике уменьшается, примерно, на 1 бар на каждые 7 метров подъема (рис. 13)
2.4. Если перед конденсатоотводчиком существует вертикальный участок трубопровода, то в нижней точке этого вертикального участка необходимо предусмотреть гидравлический затвор (рис. 14)
2.5. Диаметр конденсатопровода должен подбираться с учетом объема пара вторичного вскипания для того, чтобы избежать повышения давления в конденсатопроводе (рис. 15)

2.6. Конденсат и, по возможности, пар вторичного вскипания следует собирать и использовать повторно (рис. 16)


2.7. Каждый теплообменник должен дренироваться индивидуально
2.7.1. Отдельный конденсатоотводчик после каждого теплообменника (индивидуальный дренаж) (рис. 17)


2.7.2. Дренаж нескольких параллельно установленных теплообменников с помощью одного конденсатоотводчика (рис. 18


2.7.3. Дренаж нескольких последовательно установленных теплообменников (например, многоплитные прессы) (рис. 19)



2.8. Подтопление конденсатом (плюсы и минусы)
2.8.1. Подтопление конденсатом парового пространства теплообменника снижает скорость теплопередачи (рис. 20)



2.8.2. Подтопление теплообменника конденсатом приводит к экономии топлива за счет сокращения потребления пара. Однако необходимо учитывать то, что это может приводить к возникновению гидроударов
2.9. Меры по предотвращению гидроударов
2.9.1. Правильная организация отвода конденсата из паровых пространств (рис. 21 и 22)




Возможные причины подтоплений:

Ошибочно подобранный конденсатоотводчик (например, неправильный тип, конденсат отводится периодически, недостаточная пропускная способность). Конденсатоотводчик работает неправильно (например, конденсатоотводчик не открывается или открывается со слишком большим переохлаждением). Перепад давления на конденсатоотводчике слишком мал из-за больших потерь напора внутри теплообменника при низких нагрузках (например, давление в конденсатной линии > 1 бар(абс), а давление в теплообменнике при низкой нагрузке < 1 бар(абс)).

Меры по предотвращению гидроударов:

Для непрерывного отвода конденсата из теплообменников без подтоплений используйте только поплавковые конденсатоотводчики типа UNADuplex. Конденсатоотводчик должен быть достаточно большим, так как при малых нагрузках давление перед конденсатоотводчиком может быть очень низким (вплоть до вакуума). При этом требуется, чтобы давление в конденсатной линии не повышалось, чтобы после конденсатоотводчика не было подъемов конденсатопровода, и чтобы конденсатоотводчик устанавливался в самой нижней точке, обеспечивая тем самым дополнительный гидростатический напор. Если в теплообменнике возможно образование вакуума, то после регулирующего парового клапана рекомендуется установить прерыватель вакуума (обратный клапан RK).

В тех случаях, когда теплообменное оборудование с регулированием по «паровой стороне» работает в широком диапазоне тепловых нагрузок (при этом давление в паровом пространстве изменяется от вакуума до максимального рабочего значения) и стандартные конденсатоотводчики не могут обеспечить стабильный отвод конденсата, то рекомендуется применять специальные перекачивающие конденсатоотводчики UNA25-PK (см. рис. 8d)

Перекачивающие конденсатоотводчики работают в двух режимах: при достаточном перепаде давления - как нормальный поплавковый конденсатоотводчик, при недостаточном перепаде давления-как механический конденсатный насос. Переключение из одного режима в другой происходит автоматически в зависимости от уровня конденсата внутри конденсатоотводчика.

Для перекачивания конденсата используется «острый пар». Встроенные обратные клапаны обеспечивают движение конденсата в одном направлении. Подача «острого пара» в конденсатоотводчик и открытие вентиляционного клапана происходит автоматически.




2.9.4. Конденсатоотводчики непрерывного действия

Термостатические конденсатоотводчики зачастую отводят конденсат периодически и, следовательно, рекомендуются к применению на небольших расходах конденсата. Для отвода конденсата из теплообменников (и в данном конкретном примере пароводяной теплообменник с регулированием “по пару”) рекомендуется использовать поплавковые конденсатоотведчики UNA!

2.9.5. Гидрозатворы и компенсаторы гидроударов в случае подъема конденсата

2.9.6. Правильное расположение различных конденсатных линий и конденсатного коллектора (рис. 26 и 27)

1.10. Воздух и другие неконденсируемые газы, присутствующие в паре, снижают температуру пара и нагревательную способность теплообменников, и могут приводить к неравномерному нагреву продукта (критично, например, для прессов, вращающихся сушильных цилиндров) (рис. 3 и 28)

Теплообменники небольшого и среднего размера достаточно хорошо вентилируются через конденсатоотводчики со встроенной функцией автоматического отвода воздуха.