Электромагнитная обработка воды Прибор «Термит. Магнитная обработка воды


Напряжение питания, В —— 220/12

Ток потребления, А —— 0,5..2

Частота импульсной обработки воды, Гц —— 20…2000

Форма сигнала — треугольник или прямоугольный импульс

Научные исследования подтверждают изменение свойств воды при внешнем электромагнитном воздействии. Дождевая вода или полученная в результате таяния снега, по свойствам значительно отличается от воды из подземных источников артезианских скважин и естественных выходов на поверхность земли в виде ключей.

В подземной воде отсутствуют электромагнитные свойства. Вода в виде дождевых осадков заряжена грозовыми разрядами, отличительная способность такой воды — легкое усвоение растениями, при этом ускоряется их рост при почти полном отсутствии микроэлементов.

Во многих районах возможность использования дождевой или снеговой воды для полива растений ограничено из-за малого количества природных осадков, приходится пользоваться водой, взятой из водопровода, в которую также добавлено ядовитое вещество — хлор, который снижает качественные показатели воды.

В садоводствах хлор в воду не добавляют, вода используется из артезианских скважин с больших глубин. Ускорить рост растений позволяет использование артезианской воды после обработки электромагнитным полем, что приводит к повышению урожайности, снижению заболеваемости растений.

Ранее, в торговле, можно было купить металлическую вставку в водопровод, обладающую электромагнитными свойствами, но в данном устройстве не было возможности варьировать изменения свойств воды с целью подбора оптимального варианта — мощности излучения, его частоты, изменения формы электромагнитного поля.

Простой переносной прибор для электромагнитной обработки воды легко выполнить, используя катушку из медного провода, подключенную к источнику постоянного тока. Катушка крепится на неметаллический поливочный шланг водопровода. На время разбора воды через катушку подается постоянный электрический ток от сетевого блока питания или от небольшого аккумулятора. Простота такого схемного решения не позволяет провести исследования с целью получения оптимального варианта, для этого разработана электронная схема, которая позволяет проводить изменение частоты, мощности и формы электромагнитного поля с целью качественной поляризации атомов воды, солей и минералов, растворимых в воде.

Принципиальная схема (рис. 1) состоит из генератора частоты на аналоговом таймере DA1, усилителе мощности на биполярных транзисторах VT2-VT3 и блоке питания на силовом трансформаторе Т2.

Для установки оптимального режима обработки воды в схему введены: регулятор частоты на переменном резисторе R3, регулятор мощности на резисторе R6, переключатель SA1 формы сигнала — прямоугольного или треугольного.

Мультивибратор на микросхеме аналогового таймера работает в режиме генератора прямоугольных импульсов, в первом случае импульс используется без изменений, во втором случае с помощью зарядного конденсатора СЗ импульс переводится в форму пилы.

Внутренняя структура микросхемы таймера состоит из верхнего и нижнего компараторов, в виде операционных усилителей; RS-триггера; выходного усилителя и ключевого транзистора, используемого для разрядки внешнего конденсатора.

Питание на выводы 8 и1 микросхемы подается от стабилизированного источника тока на транзисторе VT1, это снижает влияние мощных импульсных токов при электромагнитной обработке воды на работу таймера.

Вывод 4 — сброс в работе не используется и подключен к плюсу источника питания, для устранения влияния ложных срабатываний таймера.

Вывод 7 таймера — вывод коллектора внутреннего транзистора сброса, эмиттер которого подключен к общему проводу. Состояние этого транзистора идентично с состоянием выхода 3, открыт — когда на выходе таймера нулевой потенциал и заперт, когда присутствует напряжение. В данной схеме электромагнитной обработки воды он используется как вспомогательный выход с повышенной нагрузочной способностью для индикации состояния микросхемы таймера. Светодиод HL1 горит, когда внутренний транзистор заперт, указывая, что на выходе 3 таймера высокое напряжение. Вход 2 таймера -управление переключением выходного напряжения, вход 6 — переключение выхода 3 в нулевое состояние при напряжении на конденсаторе С1 выше 2/3Un.

Зарядка конденсатора С1 происходит при высоком уровне на выходе 3 через резисторы R2 и R3 "Частота". По окончании зарядного цикла при 2/3Un внутренний триггер микросхемы переключит выход 3 на нулевой уровень, конденсатор С1 разрядится через цепи R2, R3, R4, R6, на выходе появится прямоугольный импульс высокого уровня, триггер вернется в исходное состояние и повторится процесс заряда конденсатора С1.

Вывод 5 в микросхеме позволяет получить прямой доступ к точке делителя с уровнем 2/3Un. Данный вывод в схеме не используется и соединен с общим проводом через конденсатор С2.

Стабилизация напряжения питания микросхемы DA1 выполнена на транзисторе VT1 с цепями стабилизации напряжения базы, резистором R5 и стабилитроном VD2.

Частота следования импульсов зависит от сопротивления резистора R3 "Частота".

Усилитель мощности выполнен на транзисторах с большим коэффициентом усиления для увеличения быстродействия схемы и раскачки выходного каскада на транзисторе VT3, при высоком уровне импульса тока в катушке L1.

Конденсатор СЗ в базовой цепи транзистора VT2 позволяет сформировать из прямоугольного импульса таймера треугольную форму. Тумблером SA1 определяется режим обработки сигнала таймера. Резистор R7 позволяет создать небольшое смещение на базе входного транзистора усилителя мощности.

Импульсный диод VD3 в цепи коллектора транзистора VT2 позволяет защитить схему при обратной полярности напряжения источника питания.

Электромагнитная катушка L1 защищена от пробоя обратным напряжением импульса тока диодом VD4. Конденсатор СЗ создает на катушке резонанс напряжения, увеличивая амплитуду импульса тока.

Блок питания прост по исполнению и выдает 14… 16 В напряжения при токе 1 …2 А, возможно использовать любой сетевой адаптер с близкими характеристиками.

Работа устройства электромагнитной обработки воды основана на формировании импульсного тока в электромагнитной катушке с целью поляризации воды и содержащихся в ней примесей. Полив растений обработанной водой повышает урожай на 25…30%. При использовании прибора в бытовых условиях электромагнитная обработка воды предотвращает образование накипи и отложений в трубах горячей и холодной воды, смягчает воду, что снижается расход стиральных порошков, электроэнергии и времени при стирке.

В приборе установлены заводские радиодетали: таймер типа 555 или КР1006ВИ1, резисторы — МЛТ-0,125, переменные СП-3-4АМ. Конденсаторы типа КМ и К53.

Транзисторы с высоким коэффициентом усиления, более 100. Катушка L1 имеет 200 витков провода диаметром 0,23 мм, намотанным на картонный патрон диаметром 28 мм. Патрон одевается на поливочный шланг, на схему подается напряжение, регуляторы частоты и мощности предварительно выставляются в среднее положение. При работе индикатор HL1 должен заметно мигать на нижней частоте генератора, катушка и выходной транзистор при работе немного греются, что является нормальным состоянием.

На выходной транзистор типа КТ-82ЭА (аналог D333) крепится радиатор.

Диодный мост VD5 применен на большой ток, до 30 А, используется без радиатора и может заменен на два диода КД213Б.

В лабораторных условиях работоспособность схемы по магнитным свойствам проверить несложно: при подаче напряжения катушка L1 втягивает в себя стальную отвертку средних размеров, ток потребления при этом достигает в амплитуде до 6 А, средний — 1 …1,5 А.

При отсутствии на даче напряжения электросети схему прибора можно питать от старого аккумулятора, предварительно зарядив его от блока питания. Аккумулятор следует подключить к плюсу диодного моста VD5 или вместо катушки L1 в соответствующей полярности. Окончание зарядки — по началу обильного кипения электролита. Перезаряда не произойдет, так как вторичные обмотки трансформатора Т2 соединены в выходное напряжение 12 В.

Электронную схему прибора можно использовать и для питания электродвигателей постоянного тока в сверлильных станках и по другим назначениям, обороты можно регулировать регулятором мощности R6, а двигатель подключить к точкам подключения катушки L1.

Печатный монтаж выполнен на одностороннем стеклотекстолите. Размер платы (рис. 2) — 75×36 мм.

Регулятор частоты, мощности, индикатор работы и тумблер формы сигнала установлены на передней панели прибора, блок питания выполнен в отдельном корпусе и соединен с электронной схемой двухжильным проводом сечением 2,5 мм2.



О. В. Мосин, канд. хим. наук

В статье приводится обзор перспективных современных направлений и подходов в практической реализации противонакипной магнитной обработки воды в теплоэнергетике и смежных отраслях промышленности, в т.ч. в водоподготовке, для устранения накипеобразования cолей жесткости (карбонатные, хлоридные и сульфатные соли Ca 2+ , Mg 2+ , Fe 2+ и Fe 3+) в теплообменной аппаратуре, трубопроводах и сантехнических системах. Рассмотрены принципы физического воздействия магнитного поля на воду, параметры протекающих в воде физико-химических процессов и поведение расстворенных в подвергнутой магнитной обработке воде солей жесткости. Показано, что воздействие магнитного поля на воду носит комплексный многофакторный характер. Приведены конструктивные особенности выпускаемых отечественной промышленностью аппаратов магнитной обработки воды на постоянных и электромагнитах – гидромагнитных систем (ГМС), магнитных преобразователях и магнитных активаторов воды. Дана эффективность использования аппаратов магнитной обработки воды в водоподготовке.

Введение

Воздействие магнитного поля на воду носит комплексный многофакторный характер и в конечном результате сказывается на изменениях структуры воды и гидратированных ионов, физико-химических свойствах и поведении растворённых в ней неорганических солей . При воздействии на воду магнитного поля в ней изменяются скорости химических реакций за счет протекания конкурирующих реакций растворения и осаждения растворенных солей, происходит образование и распад коллоидных комплексов, улучшается электрохимическая коагуляция с последующей седиментацией и кристаллизацией солей . Также имеются достоверные данные, указывающие на бактерицидное действие магнитного поля , что существенно для использования магнитной обработки воды в сантехнических системах, где требуется высокий уровень микробной чистоты.

В настоящее время гипотезы, объясняющих механизм воздействия магнитного поля на воду подразделяются на три основные взаимодополняющие группы – коллоидные, ионные и водные. Первые предполагают, что под влиянием магнитного поля в обрабатываемой воде происходит спонтанное образование и распад коллоидных комплексов ионов металлов, фрагменты распада которых формируют центры кристаллизации неорганических солей, что ускоряет их последующую седиментацию. Известно, что наличие в воде ионов металлов (особенно железа Fe 3+) и микровключений из ферромагнитных частиц железа Fe 2 O 3 интенсифицирует образование коллоидных гидрофобных золей ионов Fe 3+ с ионами хлора Cl - и молекулами воды Н 2 О общей формулы . 3zCl - , что может привести к появлению центров кристаллизации на поверхности которых адсорбируются катионы кальция Ca 2+ и магния Mg 2+ , составляющие основу карбонатной жесткости воды, и образованию мелкодисперстного кристаллического осадка, выпадающего в виде шлама. При этом, чем больше и устойчивее гидратная оболочка ионов, тем труднее им сближаться или оседать на адсорбирующих комплексах на поверхностях раздела жидкой и твердой фаз.

Гипотезы второй группы объясняют действие магнитного поля поляризацией растворённых в воде ионов и деформацией их гидратных оболочек, сопровождающаяся уменьшением гидратации – важного фактора, обуславливающего растворимость солей в воде, электролитическую диссоциацию, распределение веществ между фазами, кинетику и равновесие химических реакций в водных растворах, в свою очередь повышающей вероятность сближения гидратов ионов и процессы седиментации и кристаллизации неорганических солей . В научной литературе имеются экспериментальные данные, подтверждающие, что под влиянием магнитного поля происходит временная деформация гидратных оболочек расстворенных в воде ионов, а также изменяется их распределение между твердой и жидкой водяной фазой . Предполагается, что воздействие магнитного поля на расстворенные в воде ионы Ca 2+ , Mg 2+ , Fe 2+ и Fe 3+ может быть также связано с генерированием в движущемся потоке воды слабого электрического тока или с пульсацией давления .

Гипотезы третьей группы постулируют, что магнитное поле за счет поляризации дипольных молекул воды оказывает воздействие непосредственно на структуру ассоциатов воды, образованных из множества молекул воды, связанных друг с другом посредством низкоэнергетичных межмолекулярных ван-дер-вальсовых, диполь-дипольных и водородных связей, что может привести к деформации водородных связей и их частичному разрыву, миграции подвижных протонов Н + в ассоциативных элементах воды и перераспределению молекул воды во временных ассоциативных образованиях молекул воды – кластерах общей формулы (Н 2 О) n , где n по последним данным может достигать от десятков до нескольких сотен единиц . Эти эффекты в совокупности могут привести к изменению структуры воды, что обуславливает наблюдаемые изменения её плотности, поверхностного натяжения, вязкости, значения рН и физико-химических параметров протекающих в воде процессов, в т. ч. растворения и кристаллизации расстворенных в воде неорганических солей . В результате содержащиеся в воде магниевые и кальциевые соли теряют способность формироваться в виде плотного отложения - вместо карбоната кальция СаСО 3 образуется более щадящая мелкокристаллическая полиморфная форма СаСО 3 , по структуре напоминающая арагонит, который или совсем не выделяется из воды, поскольку рост кристаллов останавливается на стадии микрокристаллов, или выделяется в виде тонкодисперсной взвеси, скапливающейся в грязевиках или отстойниках. Также имеются сведения о влиянии магнитной водообработки на уменьшение концентрации в воде кислорода и углекислого газа, что объясняется возникновением метастабильных клатратных структур катионов металлов по типу гексааквакомплекса [Са(Н 2 О 6)] 2+ . Комплексное воздействие магнитного поля на структуру воды и гидратированные катионы солей жесткости открывает широкие перспективы для использования магнитной обработки воды в теплоэнергетике и смежных отраслях промышленности, в т.ч. в водоподготовке.

Магнитная обработка воды широко внедряется во многих отраслях промышленности, сельском хозяйстве и медицине. Так, в строительстве обработка цемента магнитной водой в процессе его гидратации сокращает сроки затвердевания клинкерных составляющих цемента с водой, а мелкокристаллическая структура формирующихся твердых гидратов придает изделиям большую прочность и повышает их стойкость к агрессивным воздействиям окружающей среды . В сельском хозяйстве пятичасовое замачивание семян в омагниченной воде заметно повышает урожай; полив омагниченной водой стимулирует на 15-20% рост и урожайность сои, подсолнечника, кукурузы, помидоров . В медицине применение намагниченной воды способствует растворению почечных конкрементов, оказывает бактерицидное действие . Предполагается, что биологическая активность омагниченной воды связана с повышением проницаемости биологических мембран тканевых клеток за счёт большей структурированности омагниченной воды, т.к. под воздействием магнитного поля молекулы воды, представляющие собой диполи ориентируются упорядоченно относительно полюсов магнита .

Перспективно использование магнитной обработки в водоподготовке для умягчения воды, поскольку ускорение процесса кристаллизации накипеобразующих солей в воде при магнитной обработке, приводит к значительному уменьшению концентраций растворенных в воде ионов Ca 2+ и Mg 2+ за счет процесса кристаллизации и уменьшения размеров кристаллов, осаждающихся из нагреваемой воды, подвергнутой магнитной обработке. Для удаления из воды трудно осаждаемых тонких взвесей (мути) используется способность омагниченной воды изменять агрегатную устойчивость и ускорять коагуляцию (слипание и осаждение) взвешенных частиц с последующим образованием мелкодисперстного осадка, что способствует извлечению из воды разного рода взвесей. Омагничивание воды может применяться на водопроводных станциях при значительной мутности природных вод; аналогичная магнитная обработка промышленных стоков позволяет достаточно быстро и эффективно осаждать мелкодисперсные загрязнения.

Магнитная обработка воды помогает не только предотвращать выпадение накипеобразующих солей из воды, но и значительно уменьшать отложения органических веществ, например, парафинов. Такая обработка оказывается полезной в нефтедобывающей промышленности при добыче высокопарафиновой нефти, причем эффекты магнитного поля возрастают, если нефть содержит воду.

Наиболее востребованной и эффективной магнитная обработка воды оказалась в теплообменных устройствах и системах, чувствительных к накипи – в виде образующихся на внутренних стенках труб паровых котлов, теплообменников и других теплообменных аппаратов твёрдых отложений гидрокарбонатных (углекислые соли кальция Са(НСО 3) 2 и и магния Mg(НСО 3) 2 при нагреве воды разлагающиеся на СаСО 3 и Mg(OH) 2 с выделением СО 2), сульфатных (CaSO 4 , MgSO 4), хлоридных (MgSO 4 , MgCl 2) и в меньшей мере силикатных (SiO 3 2-) солей кальция, магния и железа .

Повышенная жесткость делает воду непригодной для хозяйственно-бытовых нужд, а несвоевременная очистка теплообменников и труб от накипи в виде карбонатных, хлоридных и сульфатных солей Ca 2+ , Mg 2+ и Fe 3+ приводит к уменьшению диаметра трубопровода, что ведёт к повышенному гидравлическому сопротивлению, что в свою очередь негативно сказывается на работе теплообменного оборудования. Поскольку накипь обладает чрезвычайно малым коэффициентом теплопроводности, чем металл, из которого изготовлены нагревательные элементы, на подогрев воды расходуется больше времени. Поэтому с течением времени энергетические потери могут сделать работу теплообменника на такой воде неэффективной или вовсе невозможной. При большой толщине внутреннего слоя накипи происходит нарушение циркуляции воды; в котельных установках это может привести к перегреву металла, и, в конечном итоге, к его разрушению. Все эти факторы приводят к необходимости проведения ремонтных работ, замены трубопроводов и сантехнического оборудования и требует значительных капитальных вложений и дополнительных денежных расходов с целью очистки теплообменной аппаратуры. В целом, магнитная обработка воды обеспечивает снижение коррозии стальных труб и оборудования на 30-50% (в зависимости от состава воды), что дает возможность увеличить срок эксплуатации теплоэнергетического оборудования, водопроводов и паропроводов и существенно снизить аварийность .

Согласно СНиП 11-35-76 “Котельные установки”, магнитную обработку воды для теплооборудования и водогрейных котлов целесообразно проводить, если содержание ионов железа Fe 2+ и Fe 3+ в воде не превышает 0,3 мг/л, кислорода - 3 мг/л, постоянная жесткость (CaSO 4 , CaCl 2 , MgSO 4 , MgCl 2) - 50 мг/л, карбонатная жёсткость (Са(НСО 3) 2 , Mg(НСО 3) 2) не выше 9 мг-экв/л, а температура нагрева воды не должна превышать 95 0 С. Для питания паровых котлов – стальных, допускающих внутрикотловую обработку воды, и чугунных секционных – использование магнитной технологии обработки воды возможно, если карбонатная жёсткость воды не превышает 10 мг-экв/л, содержание Fe 2+ и Fe 3+ в воде - 0,3 мг/л, при поступлении воды из водопровода или поверхностного источника . Ряд производств устанавливает более жесткие регламентации к технологической воде, вплоть до глубокого умягчения (0,035-0,05 мг-экв/л): для водотрубных котлов (15-25 ати) - 0,15 мг-экв/л; жаротрубных котлов (5-15 ати) - 0,35 мг-экв/л; котлов высокого давления (50-100 ати) - 0,035 мг-экв/л.

Магнитная обработка воды по сравнению с традиционными способами умягчения воды ионным обменом и обратным осмосом технологически проста, экономична и экологически безопасна. Обработанная магнитным полем вода не приобретает никаких побочных, вредных для здоровья человека свойств и существенно не меняет солевой состав, сохраняя качества питьевой воды. Использование других методов и технологий может быть связано с увеличением материальных затратат и проблемами утилизации использованных в процессе водоподготовки химических реагентов (чаще всего кислот). При этом часто приходится вкладывать дополнительные материальные затраты, изменять режим работы тепловых аппаратов, применять специальные химические реагенты, изменяющие солевой состав обрабатываемой воды и др. В ионнообменных умягчителях воды используются Na + -катиониты, которые после катионирования регенерируются раствором хлористого натрия (NaCl) . Это создает проблемы для окружающей среды из-за необходимости утилизации промывных вод с высоким содержанием солей натрия. Воду умягчают также с помощью обратноосмотических мембранных фильтров, проводящих ее глубокое обессоливание. Однако этот метод менее распространен из-за высокой стоимости мембран и ограниченного ресурса их работы.

Магнитная обработка воды лишена вышеперечисленных недостатков и эффективна при обработке кальциево-карбонатных вод, которые составляют около 80% всех вод России. Сферы применения магнитной обработки воды в теплоэнергетике охватывают паровые котлы, теплообменники, бойлеры, компрессорное оборудование, системы охлаждения двигателей и генераторов, генераторы пара, сети снабжения горячей и холодной водой, системы централизованного отопления, трубопроводы и другое теплообменное оборудование.

Учитывая все эти тенденции и перспективы использования магнитной водообработки во многих отраслях промышленности, в настоящее время весьма актуальна разработка новых и совершенствование существующих технологий магнитной обработки воды для достижения более высокой эффективности работы и функционирования аппаратов магнитной обработки воды с целью более полного извлечения из воды солей жесткости и повышения ресурсов их работы.

Механизм воздействия магнитного поля на воду и конструкции аппаратов магнитной обработки воды

Принцип действия существующих магнитных аппаратов умягчения воды основан на комплексном многофакторном воздействии магнитного поля, генерируемого постоянными магнитами или электромагнитами на растворённые в воде гидратированные катионы металлов и структуру гидратов и водных ассоциатов, что приводит к и зменению скорости электрохимической коагуляции (слипания и укрупнения) дисперсных заряженных частиц в потоке намагниченной жидкости и образованию многочисленных центров кристаллизации, состоящих из кристаллов практически одинакового размера .

В процессе магнитной обработки воды происходят несколько процессов:

Смещение электромагнитным полем равновесия между структурными компонентами воды и гидратированными ионами;

Увеличение центров кристаллизации растворенных в воде солей в заданном объеме воды на микровключениях из дисперстных феррочастиц;

Изменение скорости коагуляции и седиментации дисперсных частиц в обрабатываемом магнитном поле потоке жидкости.

Противонакипный эффект при магнитной обработке воды зависит от состава обрабатываемой воды, напряженности магнитного поля, скорости движения воды, продолжительности ее пребывания в магнитном поле и других факторов. В целом, противонакипный эффект при магнитной обработке воды усиливается с повышением температуры обрабатываемой воды; при более высоком содержании ионов Ca 2+ и Mg 2+ ; с увеличением значения рН воды: а также при уменьшении общей минерализации воды.

При движении потока молекул воды в магнитном поле перпендикулярно силовым линиям магнитного поля, вдоль оси Y (см. вектор V), будет возникать момент сил F1, F2 (сила Лоренса), пытающихся развернуть молекулу в горизонтальной плоскости (рис. 1). При движении молекулы в горизонтальной плоскости, вдоль оси Z , будет возникать момент сил в вертикальной плоскости. Но полюса магнита будут всегда препятствовать повороту молекулы, и поэтому тормозить движение молекул перпендикулярно линиям магнитного поля. Это приводит к тому, что в молекуле воды, помещённой между двумя полюсами магнита остаётся только одна степень свободы – колебание вдоль оси X - силовых линий приложенного магнитного поля. По всем остальным координатам движение молекул воды будет ограниченным: молекула воды становится "зажатой" между полюсами магнита, совершая лишь колебательные движения относительно оси X. Определённое положение диполей молекул воды в магнитном поле вдоль силовых линий поля будет сохраняться, тем самым делая расположение диполей воды более упорядоченным.

Рис. 1. Поведение молекулы воды в магнитном поле.

Экспериментально доказано, что на неподвижную воду магнитные поля действуют гораздо слабее, поскольку обрабатываемая вода обладает некоторой электропроводностью; при ее перемещении в магнитных полях генерируется небольшой электрический ток . Поэтому данный способ обработки движущейся в потоке воды часто обозначается магнитогидродинамической обработкой (МГДО). С использованием современных методов МГДО можно добиться таких эффектов в водоподготовке как, увеличение значения рН воды (для уменьшения короззионной активности потока воды), создание локального увеличения концентрации ионов в локальном объёме воды (для преобразования избыточного содержания ионов солей жёсткости в тонкодисперсную кристаллическую фазу и предотвращения выпадения солей на поверхности трубопроводов и теплообменного оборудования) и др. .

Конструктивно большинство аппаратов магнитной обработки воды представляют собой магнитодинамическую ячейку, изготавливаемую в виде полого цилиндрического элемента из ферромагнитного материала, с магнитами внутри, врезающегося в водопроводную трубу с помощью фланцевого или резьбового соединения с кольцевым зазором, площадь поперечного сечения которого не меньше площади проходного сечения подводящего и отводящего трубопроводов, что не приводит к существенному падению давлению на выходе апарата . В результате ламинарного стационарного течения электропроводящей жидкости, каковой является вода, в магнитодинамической ячейке, находящейся в однородном поперечном магнитном поле с индукцией B 0 (рис. 2), генерируется сила Лоренца , величина которой зависит от заряда q частицы, скорости её движения u и индукции магнитного поля B .

Сила Лоренца направлена перпендикулярно скорости движения жидкости и к линиям индукции магнитного поля В , в результате чего заряжённые частицы и ионы в потоке жидкости движутся по окружности, плоскость которой перпендикулярна линиям вектора B . Таким образом, выбирая необходимое расположение вектора магнитной индукции В относительно вектора скорости потока жидкости, можно целенаправленно воздействовать на ионы солей жёсткости Ca 2+ , Mg 2+ , Fe 2+ и Fe 3+ , перераспределяя их в заданном объёме водной среды.

Рис. 2 – Схема течения потока воды в магнитогидродинамической ячейке. σ - электропроводность стенок ячейки; В 0 – амплитудное значение вектора индукции магнитного поля.

Согласно теоретическим расчётам, чтобы инициировать кристаллизацию солей жёсткости внутри объёма движущейся по трубе жидкости от стенок труб в зазорах магнитного устройства, задаётся такое направление индукции магнитного поля В 0 , при котором в середине зазоров образовалась зона с нулевым значением индукции. С этой целью магниты в устройстве располагаются одинаковыми полюсами навстречу друг другу (рис. 3). Под действием силы Лоренца в водной среде возникает противоток анионов и катионов, взаимодействующих в зоне с нулевым значением магнитной индукции, что способствует созданию в этой зоне концентрации взаимодействующих друг с другом ионов, что приводит к их последующему осаждению и созданию центров кристаллизации накипеобразующих солей.

Рис. 3 – Схема расположения магнитов, линий индукции, векторов силы Лоренца и ионов в МГДО. 1 – анионы, 2 – направление индуцированных токов, 3 – зоны с нулевым значением индукции, 4 – катионы.

Отечественной промышленностью выпускается два типа аппаратов для магнитной обработки воды (АМО) – на постоянных магнитах и работающих от источников переменного тока электромагнитах (соленоид с феромагнетиком), генерирующих переменное магнитное поле. Кроме устройств с электромагнитами применяются аппараты импульсного магнитного поля, распространение которого в пространстве характеризуется частотной модуляцией и импульсами с интервалами в микросекунды, способные генерировать сильные с индукцией 5-100 Тл и сверхсильные магнитные поля с индукцией более 100 Тл. Для этого используются главным образом геликоидальные соленоиды, изготовленные из прочных сплавов стали и бронзы. При получении сверхсильных постоянных магнитных полей с большей индукцией используются сверхпроводящие электромагниты

Требования, регламентирующие условия работы всех аппаратов магнитной обработки воды следующие:

Подогрев воды в аппарате должен быть не выше 95 °С;

Суммарное содержание хлоридов и сульфатов Са 2+ и Mg 2+ (CaSO 4 , CaCl 2 , MgSO 4 , MgCl 2) - не более 50 мг/л;

Карбонатная жесткость (Са(НСО 3) 2 , Mg(НСО 3) 2), - не выше 9 мг-экв/л;

Скорость движения потока воды в аппарате 1-3 м/с.

В магнитных аппаратах, работающих от электромагнитов, вода подвергается непрерывному регулируемому воздействию магнитного поля различной напряженности с чередующимися по направлению векторами магнитной индукции, а электромагниты могут быть расположены как внутри, так и вне аппарата. Электромагнит состоит из трехобмоточной катушки и магнитопровода, образуемого сердечником, кольцами каркаса катушки и кожухом. Между сердечником и катушкой образован кольцевой зазор для прохода обрабатываемой воды. Магнитное поле дважды пересекает поток воды в направлении, перпендикулярном ее движению. Блок управления обеспечивает однополупериодное выпрямление переменного тока в постоянный. Для установки электромагнита в трубопровод предусмотрены переходники. Сам аппарат нужно устанавливать как можно ближе к защищаемому оборудованию. При наличии в системе центробежного насоса аппарат магнитной обработки устанавливается после него.

В конструкциях магнитных аппаратов второго типа применяются постоянные магниты на основе современных порошкообразных носителей - магнитофоров, ферромагнетиков из феррита бария и редкоземельных магнитных материалов из сплавов редкоземельных металлов неодима (Nd), самария (Sm) с цирконием (Zr), железом (Fe), медью (Cu), титаном (Ti), кобальтом (Co) и бором (B). Последние на основе неодима (Nd), железа (Fe), титана (Ti) и бора (B) предпочтительнее, т.к. они обладают большим сроком эксплуатации, намагниченностью 1500-2400 кА/м, остаточной индукцией 1,2-1,3 Тл, энергией магнитного поля 280-320 кД/м 3 (табл. 1) и не теряют своих свойств при нагреве до 150 0 С.

Таблица 1. Основные физические параметры редкоземельных постоянных магнитов.

Постоянные магниты, ориентированные определенным образом располагаются соосно внутри цилиндрического корпуса магнитного элемента, изготовленного из нержавеющей стали марки 12Х18Н10Т, на концах которого находятся снабженные центрирующими элементами конусные наконечники, соединенные аргонно-дуговой сваркой. Основным элементом магнитного преобразователя (магнитнодинамичейской ячейки) является многополюсный магнит цилиндрической формы, создающий симметричное магнитное поле, аксиальная и радиальная составляющие которого при переходе от полюса к полюсу магнита меняют направление на противоположное. За счет соответствующего расположения магнитов, создающих высокоградиентные поперечные магнитные поля по отношению к водяному потоку, достигается максимальная эффективность воздействия магнитного поля на расстворенные в воде ионы накипеобразующих солей. В результате кристаллизация накипеобразующих солей происходит не на стенках теплообменников, а в объеме жидкости в виде мелкодисперсной взвеси, которая удаляются потоком воды при продувки системы в специальные отстойники или грязевики, устанавливаемого в любой системе отопления, горячего водоснабжения, а также в технологических системах различного назначения. Оптимальный интервал скоростей движения потока воды для ГМС составляет 0,5-4,0 м/с, оптимальное давление – 16 атм. Срок эксплуатации составляет, как правило, 10 лет.

В экономическом плане более выгодно использовать аппараты на постоянных магнитах. Основной недостаток этих аппаратов в том, что постоянные магниты на основе феррита бария размагничиваются на 40-50% после 5 лет эксплуатации. При проектировании магнитных аппаратов задается тип аппарата, eгo производительность, индукция магнитного поля в рабочем зазоре или соответствующая ей напряженность магнитного поля, скорость воды в рабочем зазоре, время прохождения водой активной зоны аппарата, состав ферромагнетика (аппараты с электромагнитами), магнитный сплав и размеры магнита (аппараты с постоянными магнитами).

Выпускаемые отечественной промышленностью устройства магнитной обработки воды подразделяются на работающие на электромагнитах аппараты магнитной обработки воды (АМО) и использующие постоянные магниты гидромагнитные системы (ГМС), магнитные преобразователи (гидромультиполи) (МПВ, MWS, ММТ) и активаторы воды серий АМП, МПАВ, МВС, КЕМА бытового и промышленного назначения. Большинство из них схожи по конструкции и принципу действия (рис. 4 и рис. 5). ГМС выгодно отличаются от магнитных устройств на основе электромагнитов и магнитотвердых ферритов, поскольку при их эксплуатации отсутствуют проблемы, связанные с потреблением электроэнергии и с ремонтом при электрическом пробое обмоток электромагнита . Эти аппараты могут быть установлены как в промышленных, так и в бытовых условиях: в магистралях, подающих воду в водопроводные сети, бойлерах, проточных водонагревателях, паровых и водяных котлах, системах водонагрева различного технологического оборудования (компрессорные станции, электрические машины, термическое оборудование и др.). Хотя ГМС рассчитаны на расход воды от 0,08 до 1100 м 3 /час, соответственно на трубопроводы диаметром 15-325 мм, однако есть опыт создания магнитных аппаратов для ТЭЦ с размерами трубопровода 4000 х 2000 мм.

Рис. 4 Виды аппаратов для магнитной обработки воды (ГМС) на постоянных магнитах с фланцевыми (вверху) и резьбовыми (внизу) соединениями.

Рис. 5. Аппарат магнитной обработки воды на электромагнитах АМО-25УХЛ.

Современные аппараты для магнитной обработки воды на основе постоянных (табл. 1) и электромагнитов (табл. 2) используются для предотвращения накипи; для снижения эффекта накипеобразования в трубопроводах горячего и холодного водоснабжения общехозяйственного, технического и бытового назначения, нагревательных элементов котельного оборудования, теплообменников, парогенераторов, охлаждающего оборудования и т.п.; для предотвращения очаговой коррозии в трубопроводах горячего и холодного водоснабжения общехозяйственного, технического и бытового назначения; осветления воды (например после хлорирования); в этом случае скорость осаждения накипеобразующих солей увеличивается в 2-3 раза, что требует отстойники меньшей емкости; для увеличения фильтроцикла систем химической водоподготовки - фильтроцикл увеличивается в 1,5 раза при уменьшении потребление реагентов, а также для очистки теплообменных агрегатов . При этом аппараты магнитной обработки воды могут использоваться самостоятельно или как составная часть любых установок, подверженных накипеобразованию в процессе эксплуатации - систем подготовки воды в жилых помещениях, коттеджах, детских и лечебно-профилактических учреждениях, для водоподготовки в пищевой промышленности и т.п. Применение этих аппаратов наиболее эффективно для обработки воды с преобладанием карбонатной жесткости до 4 мг-экв/л, и общей жесткости до 6 мг-экв/л при общей минерализации до 500 мг/л.

Табл. 2. Технические характеристики отечественных аппаратов магнитной обработки воды на постоянных магнитах.

Основные характеристики:

· Условный диаметр (мм.): 10 ; 15; 20; 25; 32

· Номинальное давление (МПа): 1

Параметр
Модель аппарата
АМП 10 РЦ АМП 15 РЦ АМП 20РЦ АМП25РЦ АМП32РЦ
Амплитудное значение магнитной индукции (В 0) на поверхности рабочей зоны, мТл 180
Количество рабочих зон 5
Номинальный расход воды, миним./норм./макс.
м 3 /час
0.15/0.5/0.71 0.35/1.15/1.65 0.65/1.9/2.9 1.0/3.0/4.5 1.6/4.8/7.4
Диаметр условного прохода, мм 10 15 20 25 32
Соединение, дюйм ½ 1/2 3/4 1 1 1 / 4
Максимальное рабочее давление, МПА) 1
Рабочий температурный интервал эксплуатации, 0 С 5–120
Размеры, (LxD), мм 108х32 124х34 148х41 172х50 150х56
Масса, кг 0.5 0.75 0.8 1.2 1.8

Табл. 3. Технические характеристики отечественных аппаратов магнитной обработки воды на электромагнитах.

Основные характеристики:

· Условный диаметр (мм.): 80 ; 100; 200; 600

· Номинальное давление (МПа): 1.6

Параметр Модель аппарата
АМО-25УХЛ АМО-100УХЛ АМО-200УХЛ AMO-600УХЛ
Напряжение, В 220
Частота сети, Гц 60
Производительность по обрабатываемой воде м 3 /ч 25 100 200 600
Напряженность магнитного поля, кА/м 200
Температура обрабатываемой воды, °С 60 40 50 70
Рабочее давление воды, МПа 1,6
Потребляемая электромагнитом мощность, КВт 0,35 0,5 0,5 1,8
Габаритные размеры электромагнита, мм 260х410 440х835 520х950 755х1100
Габаритные размеры блока питания, мм 250х350х250
Масса электромагнита, кг 40 200 330 1000
Масса блока питания, кг 8,0

На основании данной работы можно сделать следующие выводы:

1) при магнитной обработке воды происходит воздействие на саму воду, на механические примеси и ионы накипеобразующих солей и на природу протекающих в воде физико-химических процессов расстворения и кристаллизации;

2) в воде, прошедшей магнитную обработку, возможны изменения гидратации ионов, растворимости солей, значения рН, что выражается в изменении химических реакций и скорости коррозионных процессов.

Таким образом, магнитная обработка воды является перспективным динамично развивающимся современным направлением в водоподготовке для умягчения воды, вызывающее множество сопутствующих физико-химических эффектов, физическую природу и область применения которых еще только начинают изучать. Сейчас отечественной промышленностью выпускаются различные аппараты магнитной обработки воды на постоянных и электромагнитах, находящие широкое применение в теплоэнергетике и водообработке. Неоспоримыми достоинствами магнитной обработки в отличие от традиционных схем умягчения воды с помощью ионного обмена и обратного осмоса является простота технологической схемы, экологическая безопасность и экономичность. Кроме этого метод магнитной обработки воды не требует каких-либо химических реактивов и поэтому является экологически чистым.

Несмотря на все достоинства аппаратов магнитной обработки воды, на практике эффект магнитного поля зачастую проявляется только в первый период эксплуатации, затем эффект постепенно снижается. Это явление потери магнитных свойств воды называется релаксацией. Поэтому в тепловых сетях кроме омагничивания подпиточной воды часто необходимо обрабатывать воду, циркулирующую в системе путем создания так называемого антирелаксационного контура, при помощи которого обрабатывается вся вода, циркулирующая в системе.

Список литературы

1. Очков В. Ф. Магнитная обработка воды: история и современное состояние // Энергосбережение и водоподготовка, 2006, № 2, с. 23-29.

2. Классен В. И. Омагничивание водных систем, Химия, Москва, 1978, с. 45.

3. Соловьева Г. Р. Перспективы применения магнитной обработки воды в медицине, В сб.: Вопросы теории и практики магнитной обработки воды и водных систем, Москва, 1974, с. 112.

4. Креетов Г. А. Термодинамика ионных процессов в растворах, 2 изд., Ленинград, 1984.

5. Мартынова О. И., Гусев Б.Т., Леонтьев Е.А., К вопросу о механизме влияния магнитного поля на водные растворы солей // Успехи физических наук, 1969, № 98, с. 25-31.

6. Чеснокова Л.Н. Вопросы теории и практики магнитной обработки воды и водных систем, Цветметинформация, Москва, 1971, с. 75.

7. Kronenberg K. Experimental evidence for the effects of magnetic fields on moving water // IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers, Inc., 1985, V. 21, № 5, p. 2059–2061.

8. Мосин О.В., Игнатов И. Структура воды и физическая реальность // Сознание и физическая реальность. 2011, Т. 16, № 9, с. 16-32.

9. Банников В.В. Электромагнитная обработка воды. // Экология производства, 2004, № 4 , с. 25-32.

10. Пороцкий Е.М., Петрова В.М. Исследование влияния магнитной обработки воды на физико-химические свойства цемента, раствора и бетона, Материалы научной конференции, ЛИСИ, Ленинград, 1971, с. 28-30.

11. Espinosa A.V., Rubio F. Soaking in water treated with electromagnetic fields for stimulation of germination in seeds of pawpaw (Carica papaya L.) // Centro Agricola, 1997, V. 24, № 1, p. 36-40.

12. Гребнев А.Н., Классен В.И., Стефановская Л.К., Жужгова В.П. Растворимость мочевого камня человека в омагниченной воде, В сб.: Вопросы теории и практики магнитной обработки воды и водных систем, Москва, 1971, с. 142.

13. Шимкус Э.М., Аксенов Ж.П., Каленкович Н.И., Живой В.Я. О некоторых лечебных свойствах воды, обработанной магнитным полем, в сб.: Влияние электромагнитных полей на биологические объекты, Харьков, 1973, с. 212.

14. Штереншис И.П. Современное состояние проблемы магнитной обработки воды в теплоэнергетике (обзор), Атоминформэнерго, Москва, 1973, с. 78.

15. Мартынова О.И., Копылов А.С., Теребенихин У.Ф., Очков В.Ф. К механизму влияния магнитной обработки на процессы накипеобразования и коррозии // Теплоэнергетика, 1979, №. 6, с. 34-36.

16. СНиП 11-35-76 “Котельные установки”. Москва, 1998.

17. Щелоков Я.М. О магнитной обработке воды // Новости теплоснабжения, 2002, Т. 8, № 24, с. 41-42.

18. Присяжнюк В.Я. Жесткость воды: способы умягчения и технологические схемы // СОК, Рубрика Сантехника и водоснабжение, 2004, № 11, с. 45-59.

19. Тебенихин Е.Ф., Гусев Б.Т. Обработка воды магнитным полем в теплоэнергетике, Энергия, Москва, 1970, с. 144.

20. С. И. Кошоридзе С.И., Левин Ю.К. Физическая модель снижения накипеобразования при магнитной обработке воды в теплоэнергетических устройствах // Теплоэнергетика, 2009, № 4, с. 66-68.

Гульков А.Н., Заславский Ю.А., Ступаченко П.П. Применение магнитной обработки воды на предприятиях Дальнего Востока, Владивосток, изд-во Дальневосточного университета, 1990, с. 134.

21. Савельев И.В. Курс общей физики, том 2, Электричество и магнетизм. Волны. Оптика, Наука, Москва, 1978, с. 480.

22. Брановер Г.Г., Циннобер А.Б. Магнитная гидродинамика несжимаемых сред, Наука, Москва, 1970, с. 380.

23. Домнин А.И. Гидромагнитные системы – устройства для предотвращения образования накипи и точечной коррозии // Новости теплоснабжения, 2002, Т. 12, № 28, с. 31-32.

24. Мосин О.В. Магнитные системы обработки воды. Основные перспективы и направления // Сантехника, 2011, № 1, c. 21-25.

Стремление экономить материалы и топливо понуждают конструкторов энергетического оборудования к интенсификации его использования и увеличению мощности тепловых потоков на единицу площади теплообменных поверхностей. В свою очередь, повышаются требования к качеству питательной воды промышленных и энергетических потребителей. Наряду с этим упрощаются технологии водоподготовки, позволяющие малыми средствами добиться больших результатов.

Подписаться на статьи можно на

Применение «нехимических» методов обработки воды в энергетике расширяется благодаря технологическим и экономическим преимуществам: их внедрение позволяет значительно сократить количество используемых реагентов (кислот, щелочей, хлорида натрия) и тем самым избавиться от проблем утилизации сточных вод с высоким содержанием химических веществ. Активно развиваются такие технологии водоподготовки как: магнитная, электромагнитная (радиочастотная), акустическая (ультразвуковая), мембранная. Также к этим методам условно отнесены электрохимический (электродиализный) метод и обработка воды комплексообразователями (комплексонами).

Магнитная обработка воды

Магнитные аппараты устанавливают для предотвращения (или уменьшения) осаждения накипеобразующих веществ на теплообменной поверхности. Наиболее часто встречающаяся накипь образуется карбонатом кальция.

Температура осаждения карбоната кальция из природной воды - 40-130 °С. Следует помнить о том, что температура нагретой воды в теплогенераторе или теплоиспользующем аппарате всегда ниже температуры стенки нагреваемой поверхности. Принято считать, что температура стенки трубы в топке водогрейного котла выше температуры нагретой воды на 30-40 °С, а в теплообменнике (бойлере) - на 15-20 °С. Но, конечно, эта разница температур уменьшается с уменьшением габаритов и теплопроизводительности котлов.

Эти и другие соображения обусловили следующие требования к технологии и аппаратам магнитной обработки воды (СНиП II-35-76**** «Котельные установки», СНиП 41-02-2003 «Тепловые сети» (ранее СНиП 2.04.07-86*), СП 41-101-95 «Проектирование тепловых пунктов» (ранее «Руководство по проектированию тепловых пунктов»: М., Стройиздат, 1983);

Для чугунных и других паровых котлов с температурой нагрева воды до 110 °С допускается карбонатная жесткость исходной воды не более 7 ммоль/л (то есть практически до наибольшего значения карбонатной жесткости природной воды, определяемого в лаборатории), содержание железа (Fe) - не более 0,3 мг/л. При этом обязательна установка шламоотделителя на продувочном трубопроводе парового котла;

Для водогрейных котлов с температурой нагрева воды до 95 °С в закрытой системе теплоснабжения допускается карбонатная жесткость исходной воды не более 7 ммоль/л, содержание железа (Fe) - не более 0,3 мг/л. При этом исходную воду можно не деаэрировать, если в ней содержание растворенного кислорода не более 3 мг/л и/или сумма значений хлоридов (Сl -) и сульфатов (SO4 2-) не более 50 мг/л. Часть циркулирующей воды (не менее 10 %) должна проходить через дополнительный магнитный аппарат для предотвращения «затухания» магнитного воздействия.

Для системы горячего водоснабжения с t нагрева воды до 70 0С должны выполняться все указанные выше условия (ограничения по жесткости воды, содержанию железа, деаэрация или другая противокоррозионная обработка воды), но, кроме того, нужно обеспечить напряженность магнитного поля не более 159.103 А/м (2000 Э). Другие условия для этой системы указаны в СНиП 41-02-2003 «Тепловые сети» и в СП 41-101-95 «Проектирование тепловых пунктов».

Отсутствие общепризнанной теории магнитной обработки воды и, следовательно, отсутствие методики расчета параметров, разрушенная система нормативной базы (перевод нормативов в разряд рекомендуемых и добровольно принимаемых), существование десятков (!) производителей - всё это склоняет пользователей к случайному выбору аппаратов и приводит к положению, при котором в одинаковых, казалось бы, условиях эффект магнитной обработки воды различается.

У «классических» физиков вызывает недоумение и неприятие притязания инженеров объяснять эффективность магнитной обработки воды действием магнита на внутриатомные силы. Конечно, для внутриатомных сил магнитный импульс применяемых аппаратов - то же самое, что пушечный выстрел в океан в надежде его «взволновать»,

Можно предположить, что противоречие разрешается простым напоминанием: обработке воды подвергается не Н 2 О, а природная вода - срéды очень и очень разные.

Кроме того, недоверие вызывает существование так называемой «памяти воды», то есть сохраняющейся в течение довольно длительного времени (по разным оценкам: 12-190 ч) после «омагничивания» способности воды предотвращать или хотя бы замедлять накипеобразование.

Из известных гипотез магнитной обработки воды представляется наиболее обоснованной гипотеза, выдвинутая сотрудниками кафедры водоподготовки МЭИ (Технический университет) и развитая далее в Институте проблем нефти и газа РАН.

Основное положение гипотезы: магнитная обработка воды может быть эффективной только при наличии в воде ферромагнитных частиц (хотя бы в количестве более 0,1-0,2 мг/л). Вода должна быть пересыщена по ионам кальция и карбоната. Магнитный поток способствует дроблению агрегатов ферромагнитных частиц на фрагменты и отдельные частицы, «освобождению» их от водной оболочки, образованию газовых микропузырьков.

Ферромагнитные микрочастицы в многократно увеличенном количестве создают центры кристаллизации, и накипеобразующие элементы меньше осаждаются на теплонапряженной поверхности и больше - внутри водного потока. Газовые микропузырьки действуют как флотоагенты.

Конструкции магнитных аппаратов разнообразны.

Лучшая эффективность - у аппаратов, полюсы которых выполнены не из углеродистой стали, а из редкоземельных металлов, сохраняющих «магнитную силу» до температуры воды 200 °С и имеющих длительный эксплуатационный ресурс (за 10 лет магнитные свойства ослабевают лишь на 0,2-3,0 %).

Магнитное поле должно быть переменным. Поэтому магнитные аппараты состоят из четырех и более магнитов - так, чтобы положительные и отрицательные полюсы чередовались.

Магниты могут располагаться как внутри, так и снаружи трубы. При внутреннем расположении полюсов происходит накапливание частиц железа на полюсах (что вызывает необходимость разборки аппарата для очистки). При наружном расположении магнитов нужно учитывать зависимость магнитной проницаемости материала трубы.

При большом количестве железа в исходной воде (5-10 мг/л) и небольшом расходе воды, когда экономически нецелесообразно организовывать специальное обезжелезивание воды, можно предусматривать перед магнитным аппаратом намагниченную фильтр-сетку: будут задерживаться и ферромагнитные, и другие взвешенные частицы.

С учетом положений описанной выше «ферромагнитной» гипотезы «омагничивания» воды требуется в каждом случае внимательно рассматривать условия установки аппаратов. Требуется также критически относиться к приведенному выше нормативу по железу: не более 0,3 мг/л. Нужно установить нижний предел содержания железа в исходной воде и, может быть, повысить верхний предел.

Во время магнитной обработки образуется углекислота. Получающийся углекислый газ в системе горячего водоснабжения и в промышленных оборотных системах выводится через водопроводную арматуру и градирни. В закрытой системе с большим расходом воды необходимо устанавливать дегазаторы.

Получающиеся хлопья необходимо выводить из системы - через шламоотделители. При этом нужно учитывать, что центробежный циркуляционный насос должен устанавливаться после магнитного аппарата, чтобы хлопья не разрушались.

Электромагнитная (радиочастотная) обработка воды

Достоинством электромагнитной обработки является легкий монтаж: электрокабель просто наматывается на трубу (как правило, не менее шести витков). При подаче электротока в кабель образующиеся электромагнитные волны в природной воде изменяют структуру находящихся там веществ (прежде всего, как описано выше, ферромагнитных частиц). В результате накипеобразующие примеси кальция (в основном - карбонаты) меньше осаждаются на теплонапряженной поверхности.

Удобство такого способа обработки воды - возможность изменения воздействия на воду путём изменения подачи электроэнергии (мощности и силы тока).

Радиочастоты - один из классов электромагнитных волн - разделены в зависимости от частоты и длины волны на 12 диапазонов. Диапазон частот, используемых при описываемой обработке воды, - 1-10 кГц, то есть часть диапазонов инфранизких частот (0,3-3 кГц) и очень низких частот (3-30 кГц).

Как и магнитная обработка воды (на постоянных магнитах), электромагнитная применима только для воды сравнительно низких температур нагрева - не более 110-120 °С и там, где нет пристенного кипения воды. Следовательно, такая обработка не может применяться для паровых котлов, где температура нагрева воды более 110 °С. Возможно, потому, что мощность тепловых потоков через нагреваемые поверхности паровых и больших водогрейных котлов несопоставимо велика по сравнению с мощностью электромагнитного сигнала, препятствующего накипеобразованию.

Показательны во много раз отличающиеся оценки тепловых нагрузок поверхностей нагрева, при которых эффективна электромагнитная обработка воды. Разные фирмы указывают для своих аппаратов допустимые значения мощности тепловых потоков: от 25-50 до 175 кВт/м 2 . Но большинство фирм вообще не указывают это значение.

Физико-химические процессы радиочастотной обработки воды пока исследованы недостаточно, а добытые в исследованиях факты не получили удовлетворительной интерпретации. Как бы там ни было, претензии изготовителей аппаратов на возможность применения этого метода в широком диапазоне значений жесткости, минерализации и температуры воды, для разных котлов и теплообменников - не обоснованы.

Акустическая (ультразвуковая) обработка воды

Выше указывалось, что из-за отсутствия общепризнанных обоснованных расчетных методик выбора параметров магнитных и электромагнитных аппаратов воспроизводимость результатов обработки воды плохая. В этом отношении ультразвуковая обработка воды имеет преимущество: результаты всегда однозначные и воспроизводимые.

Ультразвуковая технология предотвращения образования отложений на теплообменной поверхности оборудования основана на ультразвуковом возбуждении механических колебаний в толще водного потока и/или в теплообменных стенках оборудования.

Пределы применения этой технологии, сообщаемые разными фирмами-изготовителями, очень различаются:

Жесткость исходной воды (преимущественно - карбонатной) - до 5-8 и более ммоль/л (верхний предел не найден);

Температура нагреваемой воды - до 80-190 °С (теплообменники и паровые котлы низкого давления - до 1,3 МПа).

Другие параметры работы, условия применения акустических аппаратов - см. «Промышленные и отопительные котельные и мини-ТЭЦ», 2009, № 1.

Известны сотни объектов, где успешно действуют ультразвуковые противонакипные аппараты. Но сложность определения места установки аппаратов на оборудовании требует руководства работами специалистов фирмы-производителя.

Электрохимические методы обработки воды

Есть несколько электрохимических методов и конструкций, позволяющих предотвращать образование отложений в оборудовании (в том числе - накипь в теплогенераторах и теплообменниках), улучшать, интенсифицировать процессы флотации, коагуляции, седиментации и др.

Конструкции разные, но суть заключается в том, что под влиянием электрического поля в воде инициируются процессы электролиза: соли жесткости, соединения железа, других металлов осаждаются на катодах, а на анодах образуются углекислый газ и углекислота. Образующиеся ионы также разрушающе действуют на бактерии и другие биологические примеси воды.

Расход электроэнергии зависит прежде всего от минерализации исходной воды и расстояния между электродами.

Подробно технология электрохимической обработки воды разных производителей описана: «Аква-Терм», 2003, № 2 и «Аква-Magazine», 2008, № 3.

Разработана и уже применяется электроплазменная технология очистки воды, но ее применение требует еще дополнительных исследований в реальных условиях объектов.

Другие методы обработки

Многочисленными исследованиями и уже большим опытом работы теплообменного оборудования установлено, что введение в воду некоторых веществ-комплексообразователей даёт возможность предотвращать накипеобразование.

Принципиально важно отметить, что количество вводимых комплексонов несравнимо меньше стехиометрического количества. Это обстоятельство позволяет нам характеризовать такой метод в качестве «не совсем химического» - здесь нет обмена электронами между атомами, как в «классической» химической реакции.

В этой технологии гарантированный успех достижим только при обязательном учете тепловых и гидродинамических условий работы оборудования. Необходим комплекс исследований на каждом объекте и непременный надзор квалифицированных специалистов за эксплуатацией оборудования.

Сообщения, публикации о реагентах и технологии, пределах применения этого способа обработки воды столь многочисленны, что описание его находится вне пределов данной статьи. Особенности этого способа необходимо осветить в отдельной статье.

Последнее замечание, безусловно, должно быть отнесено и к мембранному методу.

Все рассмотренные технологии водоподготовки, несмотря на различие в принципах и особенностях, обладают общими признаками: их энергетические мощности невелики. А мощности тепловых потоков очень сильно различаются. Может оказаться, что действие магнитных, электромагнитных, ультразвуковых импульсов, комплексонов будет недостаточно, и накипеобразующие вещества будут «успевать» осаждаться на теплообменной поверхности.

Также весьма различны скорости движения водных потоков.

Участившиеся в последние годы сообщения об авариях жаротрубных котлов - подтверждение, в частности, прямой зависимости накипеобразования от скорости водных и мощности тепловых потоков.

Современные жаротрубные котлы, в отличие от котлов производства 30-40-х гг. прошлого века, обладают хорошими показателями соотношения теплопроизводительности и габаритов, но сохранили конструктивные недостатки жаротрубных котлов: малые скорости потоков воды и наличие застойных зон.

В. В. Банников, канд. техн. наук
Директор предприятия «Экосервис Технохим»
(www.etch.ru)

Общеизвестно, что процессы образования накипи и инкрустаций связаны с наличием в природной воде, в том числе и в пресной, больших количеств растворенных солей кальция и магния. Эти элементы, несомненно, важны для человека, для развития флоры и фауны, но доставляют массу проблем при проектировании и эксплуатации котельного и теплообменного оборудования. Нам всем хорошо знакомы накипь и осадки в нагревательных устройствах, в трубопроводах, в стиральных и посудомоечных машинах, известковые отложения на сантехническом оборудовании, кафеле, а также сухость волос и кожи при мытье водой с высоким содержанием кальция и магния.

О жесткости воды

Природные воды очень разнообразны по химическому составу. Главными примесями речных вод, содержащих 500-600 мг/л растворенных солей, являются ионы кальция, магния, натрия, бикарбонатов, сульфатов и хлоридов. Маломинерализованные речные воды содержат преимущественно ионы кальция и магния.

Солесодержание подземных вод зависит от условий залегания подземного горизонта и меняется от 100-200 мг/л до нескольких граммов на литр. В пресных водах артезианских скважин преобладают ионы Са 2+ и НСО 3 2- . Эти ионы присутствуют во всех минерализованных водах. Источник их появления - природные залежи известняков, гипса и доломитов. В маломинерализованных водах больше всего содержится ионов Са 2+ . Суммарная концентрация катионов кальция и магния, выраженная в мг-экв/л, определяет жесткость воды.

Общую жесткость воды определяют также как сумму карбонатной (временной) и некарбонатной (постоянной) жесткости. Карбонатная жесткость обусловлена присутствием солей гидрокарбонатов кальция и магния и устраняется при кипячении воды. При нагревании воды гидрокарбонаты распадаются с образованием нестойкой угольной кислоты и нерастворимого осадка карбоната кальция и гидроксида магния. Некарбонатная жесткость связана с присутствием в воде кальция и магния в виде солей серной, соляной и азотной кислот. Эта жесткость при кипячении не устраняется .

Жесткая вода непригодна для систем оборотного водоснабжения, для питания паровых и водогрейных котлов, а также практически для всех видов теплообменного оборудования. Отложения солей жесткости приводят к значительному увеличению тепловой энергии на нагрев и к эквивалентному увеличению затрат на расход топлива. Также они отрицательно сказываются на теплообменных и гидравлических характеристиках, выводится из строя насосное, запорное и регулировочное оборудование, ускоряются коррозионные процессы.

На рис. 1 приведена зависимость потерь тепловой энергии в зависимости от толщины слоя отложений солей жесткости (по данным фирмы "Lifescience Products LTD", Великобритания). Слой в 3 мм поглощает 25% тепловой энергии, а если на стенках котла или бойлера наросло 13 мм, то теряется уже 70% тепла. Отложения толщиной 10 мм нарастает менее чем за один год. Многим известно об уровне затрат на ремонт, химические и механические чистки, на замену труб и водонагревательного оборудования.

Если взглянуть на проблему накипи с точки зрения перерасхода топлива при эксплуатации теплоэнергетического оборудования, то картина очень схожая (рис. 2).


Рис. 2. Перерасход топлива в зависимости от толщины слоя накипи на поверхности нагрева .

Из этого графика видно, что 5 мм накипи приводят к перерасходу топлива до 30%, а 10 мм - повышают его расход в два раза.

Специалисты НИИ высоких напряжений рассматривают еще один важный аспект вредного влияния накипи - повышение температуры стенки водогрейной (дымогарной или жаровой) трубы . Для примера на рис. 3 приведена зависимость температуры стенки водогрейной экранной трубы, размещенной в топочном пространстве (температура 1100 °С), от толщины слоя накипи. Данные представлены для различных величин теплопроводности накипи.

Увеличение слоя накипи на поверхности нагрева котла со стороны воды существенно повышает температуру стенки водогрейных труб. В свою очередь, повышение температуры приводит к снижению, как предела прочности металла, так и предела его текучести. При этом образуются свищи, и происходит разрыв труб.


Рис. 3. Влияние толщины слоя накипи и ее теплопроводности на температуру стенки трубы .

В соответствии с ГОСТ 2874-82 «Вода питьевая» жесткость воды не должна превышать 7 мг-экв/л. Однако ряд производств устанавливает более жесткие требования к технологической воде, вплоть до глубокого умягчения (0,01-0,05 мг-экв/л и ниже). В справочнике приведены ориентировочные требования по общей жесткости (мг-экв/л) питательной воды для котлов различных типов:

  • жаротрубные (5-15 ати) - 0,35;
  • водотрубные (15-25 ати) - 0,15;
  • высокого давления (50-100 ати) - 0,035;
  • барабанные (100-185 ати) - 0,005.

Существует ряд способов умягчения воды (процесс удаления ионов Са 2+ и Mg2+). Наиболее распространен химический метод ионного обмена ионов кальция и магния, содержащихся в воде, на натрий или калий, которые не образуют осадков своих солей при нагревании. В умягчителях данного типа работает катионообменная смола, которую периодически нужно регенерировать раствором поваренной соли. Этот метод не лишен существенных недостатков. Использование поваренной соли для регенерации смолы создает проблемы для окружающей среды из-за необходимости утилизации промывных вод с высоким содержанием солей. Из питьевой воды выводятся соли кальция ниже требуемых для нашего организма норм, при этом вода обогащается натрием, далеко не полезным для питья. Ограничен ресурс работы ионообменных смол.

Воду умягчают также с помощью мембранных фильтров, которые фактически ее обессоливают. Этот метод менее распространен из-за высокой стоимости мембран и ограниченного ресурса их работы.

Существуют и другие методы умягчения: термические, реагентные, диализные и комбинированные. Выбор метода умягчения воды определяется ее химическим составом, требуемой степенью умягчения и технико-экономическими показателями.

Магнитная обработка воды

В последние десятилетия, как в России, так и за рубежом для борьбы с образованием накипи и инкрустаций применяют магнитную обработку воды. Ее широко используют в конденсаторах паровых турбин, в парогенераторах низкого давления и малой производительности, в тепловых сетях и системах горячего водоснабжения, в различных теплообменных аппаратах. В сравнении с распространенными методами умягчения воды магнитную обработку отличают простота, дешевизна, безопасность, экологичность, низкие эксплутационные расходы.

Первый патент на аппарат магнитной обработки воды был выдан бельгийскому инженеру Т. Вермейрену в 1946 г. Еще в 1936 г. он обнаружил, что при нагреве воды, пересекшей силовые линии магнитного поля, на поверхности теплообмена накипь не образуется .

Механизм воздействия магнитного поля на воду и содержащиеся в ней примеси окончательно не выяснен, но имеется ряд гипотез. Специалистами МЭИ и МГСУ выполнен большой объем работ по изучению влияния магнитного поля на процессы образования накипи, разработаны аппараты для магнитной обработки воды, сформулированы технические требования и условия их использования для практических целей.

Современные воззрения объясняют механизм воздействия магнитного поля на воду и ее примеси поляризационными явлениями и деформацией ионов солей. Гидратация ионов при обработке уменьшается, ионы сближаются и образуют кристаллическую форму соли. В основу одной из теорий положено влияние магнитного поля на коллоидные примеси воды, по другой - изменяется структура воды. При наложении магнитного поля в массе воды формируются центры кристаллизации, вследствие чего выделение нерастворимых солей жесткости происходит не на теплопередающей поверхности (нагрева или охлаждения), а в объеме воды. Таким образом, вместо твердой накипи в воде появляется мигрирующий тонкодисперсный шлам, который легко удаляется с поверхности теплообменников и трубопроводов. В аппаратах магнитной обработки вода должна двигаться перпендикулярно магнитным силовым линиям.

Очень интересное объяснение механизма магнитной обработки воды предлагает В.А. Присяжнюк в своей работе . Известно, что карбонат кальция может кристаллизоваться в двух модификациях (кальцит или арагонит), при этом основной солью, осаждающейся на теплообменном оборудовании, является карбонат в форме кальцита. Магнитная обработка «заставляет» карбонат кальция кристаллизоваться в виде арагонита, у которого ниже адгезия (прилипание) к материалу теплообменной поверхности, а также ниже силы когезии (слипания) кристаллов между собой. Для объяснения данного явления автор использует теорию магнито-гидродинамического (МГД) резонанса. При пересечении жидкостью магнитных силовых линий создается сила Лоренца, которая и вызывает структурную перестройку карбоната (изменение энтропии вещества) при ее попадании в резонанс с собственными колебаниями частиц вещества (молекулами, ионами, радикалами).

В настоящее время в России выпускают два типа аппаратов для магнитной обработки воды - с постоянными магнитами и электромагнитами. Время пребывания воды в аппарате определяется ее скоростью в пределах 1-3 м/с.

Условия использования аппаратов для магнитной обработки воды приведены в справочнике :

  • подогрев воды должен осуществляться до температуры не выше 95 °С;
  • карбонатная жесткость должна быть не выше 9 мг-экв/л;
  • содержание растворенного кислорода должно быть не более 3 мг/л, а сумма хлоридов и сульфатов - не более 50 мг/л;
  • содержание двухвалентного железа в артезианской воде допускается не больше 0,3 мг/л.

Для определения противонакипного эффекта Э, % используется следующее выражение:

Э = (m н - m м) * 100/ m н, (1)

где - m н и m м - масса накипи, образовавшейся на поверхности нагрева при кипячении в одинаковых условиях одного и того же количества воды с одинаковым исходным химическим составом, соответственно необработанной и обработанной магнитным полем, г.

Несмотря на все достоинства аппаратов для магнитной обработки воды, на практике эффект обработки зачастую проявлялся только в первый период эксплуатации, затем результат пропадал. Появился даже термин - эффект «привыкания» воды. Свои свойства омагниченная вода сохраняет меньше суток. Это явление потери магнитных свойств называется релаксацией. Поэтому в тепловых сетях кроме омагничивания подпиточной воды необходимо обрабатывать воду, циркулирующую в системе путем создания так называемого антирелаксационного контура, при помощи которого обрабатывается вся вода, циркулирующая в системе .

Электромагнитное воздействие
с переменной частотой

В конце прошлого тысячелетия появились зарубежные и отечественные аппараты для обработки воды электромагнитными волнами в диапазоне звуковых частот, которые имеют существенные преимущества перед аппаратами для магнитной обработки воды. Их отличает небольшие габариты, простота монтажа и обслуживания, экологическая безопасность, низкие эксплутационные расходы. Значительно расширен диапазон условий их применения, в первую очередь для воды с высокой жесткостью, отсутствуют высокие требования по общему содержанию солей, устранен эффект «привыкания» воды. Кроме того, обработанная питьевая вода сохраняет кальций и магний, которые необходимы нашему организму для опорно-двигательной, сердечно-сосудистой и нервной систем. Т.е. устройства данного типа можно использовать не только для защиты теплообменного оборудования, систем горячего водоснабжения и пр., но и для систем водоочистки и коммуникаций питьевой воды. Еще одно преимущество этих аппаратов - разрушение сформировавшихся ранее отложений солей жесткости в течение 1-3 месяцев.

В России используются поставляемые из-за рубежа аппараты «Water King» (фирма «Lifescience Products LTD», Великобритания), «Aqua» (фирма «Trebema», Швеция), а также выпускаются аппараты отечественного производства серии «Термит» (предприятие «Экосервис Технохим») .

Электронный преобразователь солей жесткости «Термит» - прибор настенного типа, выпускается в двух модификациях. «Термит» включает микропроцессор, который управляет изменением характеристик электромагнитных волн, генерируемых прибором в диапазоне 1 - 10 кГц. Генерируемые сигналы передаются по проводам - излучателям, которые наматываются на трубопровод. При этом сигналы распространяются в обе стороны трубопровода. С помощью проводов - излучателей поток излучения концентрируется в объеме воды, протекающей в трубопроводе.

Передаваемые электромагнитные волны изменяют структуру солей жесткости с образованием хрупкой арагонитной формы карбоната кальция. При этом прочная смесь аморфных отложений солей жесткости не образуется, а сформировавшиеся ранее отложения разрушаются и уносятся с потоком воды.

Вода при обработке не меняет солевой состав, что сохраняет ее качества питьевой воды без потерь необходимых химических элементов.

Приборы «Термит» выпускаются в соответствии с ТУ 6349-001-49960728-2000 (Гигиеническое заключение № 77.01.06.634.Т.25729.08.0, Сертификат соответствия №РОСС RU.АЮ64.А02379).

Прибор отмечен Дипломами 1 степени ВВЦ и Министерства промышленности, науки и технологий РФ, Золотой медалью ВВЦ и Серебряной медалью Министерства промышленности.

Таблица 1

Технические характеристики приборов «Термит»

По мнению специалистов шведской фирмы «Trebema» под действием электромагнитных волн в диапазоне звуковой частоты бикарбонат кальция, содержащийся в исходной воде, переходит в нерастворимый карбонат кальция. При этом карбонат осаждается не на стенках труб и оборудования, а в объеме воды. Этот процесс описывается следующим химическим уравнением:

Ca(HCO 3) 2 <=> CaCO 3 + H 2 CO 3 (1)

Нестойкая угольная кислота электролитически диссоциирует. Она также склонна к образованию углекислого газа:

CO 2 + H 2 O <=> H 2 CO 3 <=> H + + HCO 3 - (2)

Угольная кислота разрушает старые известковые осадки в трубах, водонагревателях и др. Избыток угольной кислоты смещает равновесие реакции (1) влево, т.е. приводит к повторному образованию бикарбоната кальция. На практике это означает, что в обработанной воде через несколько суток вновь образуется бикарбонат кальция (вода «теряет» свои свойства после электромагнитного воздействия).

Шведскими специалистами опытным путем установлено:

1. Небольшое уменьшение величины рН воды за счет ее подкисления угольной кислотой. Однако это уменьшение настолько мало, что не увеличивает риск коррозии.

2. Изменение электропроводности воды из-за уменьшения величины рН.

3. Уменьшение поверхностного натяжения и капиллярности (требуется меньше моющих средств).

Опытная проверка

В Институте физической химии РАН проведена опытная проверка в сопоставимых условиях эффективности работы преобразователей солей жесткости «Термит» (два образца) и прибора «WK-3» фирмы «Lifescience», Великобритания.

Испытания проводили по следующей экспресс-методике. Искусственно приготовленный раствор в объеме 2 л с общей жесткостью 21,9 мг-экв/л (примерно в 7,5 раз выше жесткости воды р. Москва и в 2,4 раза выше величины допустимой жесткости для систем с магнитной обработкой) и значением рН 7,5-7,8 пропускали в режиме непрерывной циркуляции. Последнюю осуществляли последовательно через стеклянную промежуточную емкость, стальную трубу и фторопластовую цилиндрическую ячейку.

Отложение солей жесткости происходило на алюминиевом диске, помещенном на дне фторопластовой ячейки.

Температуру циркулирующего раствора поддерживали на уровне 85+5 °С. Время циркуляции раствора в каждом опыте - 2,5 часа.

После окончания циркуляции диск вынимали из ячейки, промывали и высушивали на воздухе при 100 °С до постоянного веса. По разнице веса диска до и после эксперимента определяли количество осадка на нем солей жесткости. По выражению (1) находили противонакипной эффект. С каждым прибором проводили два параллельных опыта.

Результаты испытаний электронных преобразователей солей жесткости в водных растворах различных модификаций и контрольных опытов (без обработки воды) приведены в таблице 2.

Таблица 2

Результаты испытаний приборов различных модификаций

Приведенные в таблице 2 данные показывают, что электромагнитное воздействие на воду с высокой жесткостью даже в течение короткого времени позволяет снизить количество отложений солей жесткости, образующихся на стенках, на 24-30%. При этом эффективность всех исследованных аппаратов в одних и тех же условиях (уровень жесткости, температура, диаметр и длина стальной трубы) примерно одинакова. Следует отметить, что в опытах вода из цикла не отводилась, поэтому угольная кислота, накапливающаяся в цикле, в соответствие с химической реакцией (1) приводила к стационарному состоянию системы карбонат (осадок на диске) - карбонат (нерастворенные частицы в объеме воды) - бикарбонат. При отводе воды из цикла (как в основном и бывает на практике) равновесие реакции (1) сдвигается вправо, т.е. противонакипной эффект должен увеличиваться.

Впоследствии предприятием «Экосервис Технохим» совместно с Институтом теоретической и прикладной электродинамики РАН (Рыжиков И.А. и сотрудники) были продолжены исследования по влиянию работы прибора «Термит» на процесс образования накипи для проточных водных систем при различных температурах.

Все эксперименты проводились с использованием воды из городской сети (г. Москва, Северный округ). Вода имела следующий состав:

  • жесткость общая - 2,9-3,1 мг-экв/л, в том числе карбонатная - 2 мг-экв/л;
  • свободная углекислота СО 2 - 4,4 мг/л;
  • общая минерализация - 170-200 мг/л;
  • железо - 0,14-0,18 мг/л;
  • окисляемость - 7,2 мг О 2 /л;
  • соотношение содержания кальция и магния - 4/1 мг/мг;
  • величина рН - 7,25-7,3.

В соответствии со СНиП расчет индекса насыщения данной воды карбонатом кальция (стабильность воды) показывает величину J = 0,15. Это означает, что вода способна к отложению карбоната кальция. СНиП допускает в данном случае использовать магнитный способ для противонакипной обработки воды.

Опытная установка включала проточную ячейку в виде кварцевого сосуда с тубусом, в который помещались исследуемые образцы из оцинкованной стали. Температура в зоне образцов поддерживалась с точностью + 2 °С. Вода в ячейку поступала из водопроводной сети с предварительным подогревом. На питающий трубопровод установлены обмотки проводов-излучателей прибора «Термит». Время осаждения накипи на образцах составляло до 8 часов.

Экспериментальные данные показали, что наибольший противонакипной эффект наблюдается при интенсивном кипении воды в зоне размещения образцов. При включении в работу прибора «Термит» привес массы накипи на образцах составил величину в 8-12 раз меньшую, чем привес накипи на тех же образцах без обработки воды.

При уменьшении температуры воды (примерно 98 °С; на грани кипения) относительная разница в привесе накипи понизилась до 3-5 раз. И, наконец, при температуре воды примерно 70 °С относительная разница в привесе незначительна.

Полученные результаты можно объяснить значительным влиянием на процесс накипеобразования содержания в воде углекислоты. При кипении воды парциальное давление углекислого газа в воде существенно уменьшается , равновесие реакции (1) сдвинуто влево. Бикарбонат натрия интенсивно распадается на ионы карбонатов, углекислый газ и воду:

Ca(HCO 3) 2 → CaCO 3 ↓ + H 2 O + СО 2 (3)

Интенсивное удаление углекислого газа при кипении воды «облегчает» работу прибора «Термит» с точки зрения более интенсивного образования осадка нерастворимого карбоната кальция CaCO 3 в объеме воды, а не на поверхности образцов. При понижении температуры воды удаление углекислого газа менее интенсивно, соответственно и снижается противонакипной эффект.

Параллельно изучалось также изменение структуры осадка солей жесткости. В экспериментах на стальные оцинкованные образцы предварительно осаждали соли жесткости из потока воды. Далее образцы помещали в поток воды, обработанной с помощью прибора «Термит».

Исследования структуры образцов проводились с помощью атомно-силового микроскопа при увеличении *10000. Полученные результаты представлены на рис. 4 и 5. Из графиков видно, что без обработки воды осадок имеет плотную аморфную структуру. При включении прибора «Термит» (5 часов работы) проявляется гранулярная структура осадка, что свидетельствует о его размягчении и расслаивании. Почти в 2 раза уменьшилась и высота отложений.


Рис. 4. Водный осадок солей жесткости на стальной подложке (вода без обработки).


Рис. 5. Водный осадок солей жесткости через 5 часов работы прибора «Термит».

При подборе типа прибора электромагнитной обработки воды в диапазоне звуковых частот (по диаметру трубопровода) и оптимального режима его эксплуатации следует руководствоваться эмпирические зависимости (2) и (3).

Для прямоточных систем водоснабжения:

Q ≤ (0,005 ÷ 0,010) d² (2)

где Q - расход воды, м³/час, d - внутренний диаметр трубопровода, мм.

Для системы с циркуляционным контуром:

Qрасх. / Qцирк. ≤ 0,8 (3)

где Qрасх. - количество воды, отбираемой из системы на потребление, м³/час, Qцирк. - объемный расход воды, циркулирующий в системе, м3/час.

Также нужно учитывать, что электромагнитной обработке подвержена только карбонатная жесткость.

Противонакипной эффект будет увеличиваться (это нужно учитывать при установке прибора):

  • с повышением температуры воды вплоть до температуры кипения,
  • при более высоком содержании ионов Ca 2+ и Mg 2+ ,
  • с понижением содержания в воде углекислоты,
  • с повышением щелочности воды,
  • при уменьшении общей минерализации.
  • при увеличении степени турбулентности потока воды.

Прибор нужно устанавливать как можно ближе к защищаемому оборудованию. При наличии в системе центробежного насоса прибор электромагнитной обработки устанавливается после него.

Опыт практического использования

Автономные газовые теплогенераторы модульного типа для децентрализованного теплоснабжения «Гейзер» производства НП ЗАО «Теплогаз», г. Владимир.

На модульные теплогенераторы мощностью 240-600 кВт устанавливали приборы «Термит», а на установки мощностью 600-1200 кВт - приборы «Термит-М».

При эксплуатации установок «Гейзер» мощностью от 240 до 1200 кВт (площадь отапливаемых помещений от 3000 до 15000 м² соответственно), снабженных прибором «Термит», в течение двух лет отмечено следующее:

  • периодический осмотр теплообменных поверхностей (трубок) теплогенераторов показывает, что образующаяся накипь имеет пористую, легко удаляемую структуру, при этом теплопроводность практически не уменьшается;
  • до применения приборов накипь имела твердую, трудноудаляемую с поверхности структуру, что приводило к быстрому зарастанию трубок;
  • расходы природного газа на нагрев уменьшены на 10-15 %;
  • не было остановок работы теплогенераторов из-за образовавшейся накипи.
Воздушный компрессор 2ВМ4-24/9С производства московского завода «Борец», г. Владимир.

На трубопроводе диаметром 50 мм для подачи артезианской воды с целью охлаждения воздушного компрессора и концевого холодильника ХРК 9/8 установлен прибор «Термит». После эксплуатации компрессора в течение 3-х месяцев в цехе химического завода отмечено:

  • на поверхности водяных «рубашек» компрессора и концевого холодильника отложений солей жесткости при осмотре не наблюдалось;
  • в полостях водяных «рубашек» компрессора обнаружены жесткие отслоения в виде ржавых пластин, которые образовались в результате разрушения слоя накипи на поверхности «рубашек» под воздействием работы прибора «Термит»;
  • химический анализ воды как артезианской, так и на сливе воды из охлаждаемого оборудования, показывает практически одинаковый химический состав (общая жесткость, щелочность, хлориды, железо, сульфаты, марганец).
Холодильная установка мясоперерабатывающего комбината, г. Пенза.

Провода-излучатели прибора «Термит-М» были установлены на входной трубопровод диаметром 250 мм перед его разветвлением на два подводящих трубопровода соответственно к двум пластинчатым теплообменникам МК-15. Последние функционируют в системе конденсаторного узла аммиачной холодильной установки.

Вода из скважины, поступающая в теплообменники, имела следующий химический состав:

  • железо общее - 0,35 мг/л,
  • жесткость общая - 7,7 мг-экв/л,
  • pН - 7,19,
  • солесодержание - 488,7 мг/л,
  • хлориды (Cl-) - 205 мг/л,
  • окисляемость - 28,4 мг/л.

Вода непрерывно циркулирует через пластинчатые теплообменники МК-15.

При указанной жесткости исходной воды процесс эксплуатация теплообменников МК-15 существенно осложнен из-за очень быстрого зарастания межпластинчатого пространства солями жесткости. Требуется разбирать теплообменники и прочищать их с использованием химических реактивов.

За время эксплуатации преобразователя «Термит-М» в течение 1-1,5 месяцев отмечено некоторое накопление твердого осадка солей жесткости в межпластинчатом пространстве теплообменников. Данное обстоятельство очевидно связано с размягчением и разрыхлением старых сформировавшихся осадков солей жесткости с поверхности трубопроводов и теплообменников.

По прошествии трех месяцев испытаний, после вскрытия теплообменников на поверхности пластин наблюдался незначительный, легко удаляемый осадок коричневатого цвета. Цвет осадка, по-видимому, связан с внедрением в его структуру окисленных ионов железа (Fe3+) и продуктов коррозии. Трудноудаляемых, плотных осадков накипи на поверхности пластин теплообменников не замечено. Это свидетельствует о том, что под воздействием электромагнитного излучения в диапазоне звуковых частот соли жесткости преобразуются в такое состояние, что они либо не высаживаются на теплообменной поверхности, либо высаживаются частично в виде осадка гранулярной структуры, который легко удаляется потоком воды.

Теплообменная аппаратура спиртового производства, г. Мценск.

Два прибора серии «Термит» были смонтированы на линии подачи охлаждающей воды в пластинчатые теплообменники для снижения температуры сусла с 110 до 60 °С. За время эксплуатации в течение 1,5 лет удалось увеличить время между чистками теплообменников в 4-6 раз.

Прибор «Термит-М» в течение такого же времени эксплуатировался на линии водопровода, питающей дефлегматоры и конденсаторы брагоректификационной установки. Температура воды на выходе из установки составляла около 78 °С. После установки прибора интервал времени между чистками аппаратуры увеличился более чем в 5 раз. Оразующийся осадок солей жесткости имеет более рыхлую структуру. Отмечено также растворение ранее существовавшей накипи.

Стеклоформующие машины, стекольный завод, г. Гусь-Хрустальный.

В системе оборотного водоснабжения для охлаждения технологического оборудования стеклоформующих машин фирмы «Walter» были установлены четыре прибора «Термит». За годовой период эксплуатации отмечено резкое снижение скорости зарастания теплообменных трубок солями жесткости. Устранена твердая структура накипи, благодаря чему существенно улучшен режим охлаждения оборудования.

Электродиализная установка ДВС-800М для получения деионизованной воды, г. Подольск.

Прибор «Термит» установлен на линии подачи воды в электродиализный аппарат в цехе химико-металлургического завода.

После установки прибора «Термит» удельная электропроводность фильтрата уменьшалась до 2-3 мкСм/см. В течение 3-х месяцев эксплуатации установки с прибором «Термит» удельная электропроводность очищенной воды поддерживалась на уровне 2,5 мкСм/см, т.е. качество очищенной воды по содержанию примесей улучшилось примерно на 24%.

Таким образом, можно сделать вывод, что работа прибора способствует более активному переходу примесей из исходной воды в концентрат.

В заключение можно отметить, что приборы «Термит» успешно работают более чем на полутора тысяч объектах. Они используются для защиты и очистки от отложений солей жесткости следующих систем и оборудования:

  • водопроводные коммуникации, системы центрального отопления;
  • водонагревательное и отопительное оборудование - котлы, бойлеры, парогенераторы, радиаторы;
  • оборудование для очистки и подготовки воды, в том числе питьевой;
  • форсунки и распылительные устройства;
  • электролизеры, электродиализные установки;
  • системы кондиционирования воздуха;
  • системы охлаждения с циркуляционной водой;
  • санитарно-техническое оборудование: гидромассажные ванны, раковины, душевые;
  • бытовая техника - стиральные и посудомоечные машины; кухонное оборудование.

Литература

1. Фрог Б.Н., Левченко А.П. Водоподготовка. М.: издательство МГУ, 1996. 680 с.

2. Интернет-сайт НИИ Высоких напряжений при Томском политехническом университете. www.impulse.ru/volna , июль 2004 г.

3. Лифщиц О.В. Справочник по водоподготовке котельных установок. М.: Энергия, 1976. 288 с.

4. Присяжнюк В.А. Физико-химические основы предотвращения кристаллизации солей на теплообменных поверхностях. Журнал «Сантехника, отопление, кондиционирование», № 10, 2003 г., с. 26-30.

5. Рэт Д. Теория накипи или практика магнетизма, журнал «Мир новосела», №1, 2002 г., с. 92-98.

6. Строительные Нормы и Правила 2.04.02-84* «Водоснабжение. Наружные сети и сооружения».

7. Строительные Нормы и Правила 2.04.07-86* «Тепловые сети. Схемы тепловых сетей, системы теплоснабжения».

8. Гнеденков С.В., Синебрюхов С.Л., Коврянов А.Н. и др. Влияние покрытий на интенсивность процессов солеотложения. Институт химии Дальневосточной РАН. Электронный журнал «Исследовано в России», 2003 г.

9. Патент РФ № 2174960 от 20.10.01 г. «Устройство для обработки воды».

Издательство: ООО ИИП «АВОК–ПРЕСС»
Специализированный журнал «Энергосбережение», 2005 г.

Очищать воду современные технологии сегодня позволяют по-разному. Можно и химические средства использовать, можно использовать АкваЩит или работать и с помощью магнитного воздействия. Такое многообразие обуславливается разной покупательной способностью населения и разными потребностями в качестве воды для промышленного производства.

Жесткость, как стимул к применению

Нет ничего хуже известкового осадка. Из всех вредных примесей, жестковатость самая опасная. И опасна она именно тем, что действует медленно, но очень метко. От нее невозможно отравиться, как от вредной вирусной воды. Она не обладает цветом и вкусом, как железистая вода. В этом и состоит ее негатив. Проследить ее влияние можно, но это процесс длительный. Зато результат – накипь – видит каждый.

Она постоянно меняющаяся система, состоящая из многих компонентов. Для примера в таблице представлен упрощенный состав воды. И это многообразие нужно обработать, оставив при этом все полезное.

Полностью растворенными в воде являются только минеральные соли, но они же являются и полезными примесями. Но если их в воде слишком много, то образуется известковый осадок. Помочь устранить его может электромагнитная обработка воды , как одна из более эффективных.

Согласно ГОСТу, общая жесткость в воде не должна превышать показание 9. Жесткость ведь не только накипью плоха, она ухудшает состояние воды, не говоря уже о последствиях при работе с бытовыми приборами -

  • Увеличенный расход моющих средств;
  • Ухудшение состояния тканей;
  • Снижение питательности еды;
  • Стимулирование коррозии;
  • Падение КПД бытовых приборов

Моющие средства при контакте с жесткой водой образуют малорастворимый осадок, куда излишек мыла и уходит. На нормальную с показателем 9, расход мыла составляет примерно 2,5 грамма. При мягкой воде такой расход составит 1,75 грамма примерно. При стирке в такой воде, которая теперь обладает не только жесткостью, но еще и малорастворимым осадком, ткани начинают впитывать эти примеси. От этого они становятся ломкими, износ работает быстрее.

Если же говорить о пользе продуктов, то белки из мяса, при варке в некачественной воде, становятся практически нерастворимыми и очень плохо усваиваются человеком. В результате нужно и на ремонт тратиться и на промывку, да и здоровье тоже страдает от такой воды.

Накипь же работает внутри приборов и оборудования, как отличный теплоизоляционный материал. Расход топлива при этом увеличивается в десятки раз, а качество нагрева очень сильно падает. Все это сказывается на нормальной работе приборов и оборудования, причем до такой степени, что оно может ломаться и без возможности восстановления. Чистить поверхности или промывать их постоянно химическими растворами можно, но, сколько будет все это стоить, и на сколько потребители готовы пойти на такие минусы, как вечно поцарапанные поверхности, в остатках накипного налета, ясно будет только по мере.

В связи с таким количеством вреда от накипи и самой жесткости, человечество вынуждено было искать способы обработать воду так, чтобы получить мягкую и не знать больше таких проблем. Кроме электромагнитной обработки воды большой популярностью сегодня пользуются ионообменные приборы, умягчение воды путем впрыскивания в воду умягчающих средств.

При умягчении главной задачей остается связывание или устранение катионов кальция и магния. При работе с химическими веществами эти катионы превращаются в нерастворимые соединения, которые проще вымыть или отфильтровать. Есть вариант замены одних катионов на другие. Так работают ионообменные установки. Для этого используют специальные картриджи с определенной фильтрующей смолой. В обмен на соли жесткости она может отдавать ионы натрия или водорода. Но возня с постоянными заменами картриджей, забившихся после обменов, требует и денег, и усилий. Все это и привело к экспериментам над безреагентным умягчением.

Как обработать воду электромагнитными волнами без химических реакций?

Еще в середине двадцатого века, когда не отгремел еще костер великой отечественной войны, ученые занимались изучением работы магнитного воздействия на жесткость. Так и была открыта особенность поведения солей жесткости при обработке воды электромагнитными волнами и магнитном облучении. Хотя до сих пор так и нет одинакового мнения о том, как работает магнитное поле. Достоверно известно одно, что под таким влиянием вода становится более мягкой, а главное воздействие способствует очищению стенок оборудования.

Обычно загрязнение стенок является большой проблемой для оборудования. Осадок накапливается на резиновых прокладках в узких трубках, приходится сменные прокладки постоянно менять, а для очистки узких мест разбирать оборудование и останавливать производство. От простоев соответственно предприятие получает убытки.

По разным вариантам работы магнитного поля, в воде образуются либо центры кристаллизации, либо соли меняют форму и становятся острыми и неудобными для прилипания. При любом варианте облучения соли не могут прилипать к поверхностям, зато могут своими острыми концами качественно счищать старые залежи. Причем делают они это качественно, хоть и медленно, и при этом не нужно ничего раскручивать и очищать. Эта особенность и делает устройства электромагнитной обработки воды крайне выгодными для сфер, работающих с водой постоянно.

Кроме очистных особенностей, приводит к резкому увеличению растворения неорганических солей, растворенный кислород в большей степени концентрируется в воде. Не доказано, но есть версия о том, что электромагнитная волна поможет решить и некоторые бактерицидные проблемы.

Магнитное воздействие не оказывает влияния на здоровье человека. Это экологически безопасный способ получить мягкую воду довольно быстро, без обслуживания и лишних затрат. При этом все солевые качества остаются в норме, вода не меняет критически свой состав. Но при всех этих достоинствах одного магнитного действия было недостаточно и появились первые варианты электромагнитной обработки воды.

Магнитная или электромагнитная обработка, что выбрать?

Тем не менее, все еще используют, особенно в тех домах, где есть колонка, и нет горячей воды. Магнитный приборчик хоть и маленький, но обработать небольшую квартирку ему вполне под силам. Главное, чтобы скорость потока не превышала предельно допустимую, а вода не была горячей. У такого прибора перед электрическим братом есть всего один небольшой плюсик – это отсутствие расходов на электричество. По сути, магнитной обработкой сегодня мало кто пользуется, только в случае обработки исключительно холодной воды с определенной скоростью потока он все еще применяется.

Электромагнитная обработка воды намного выгоднее других безреагентных. нужно приварить к котлу, магнитный прибор врезать в трубу. Электромагнит же достаточно накрутить на трубу. Это значительно облегчает жизнь. Прибор легко и снять, и одеть. Только концы обмотки нужно изолировать и обязательно смотреть, чтобы вода на проводку не попадала. Собственно это и все обслуживание. Не работает такой прибор только в двух случаях – отключение электроэнергии и вода в системе стоит. При использовании магистрального устройства подобного толка, защита от образования накипи гарантирована практически для всех бытовых приборов. Только вот питьевого качества такой прибор не даст. Именно поэтому, выбирать электромагнитную обработку имеет смысл только от накипи и . Его задача больше относится к очищению поверхностей и защите их от новых отложений. Потому в квартиру лучше дополнительно еще купить питьевой фильтр под мойку.