Рабочее напряжение светодиода. Как проверить светодиод мультиметром


Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Хотя целью этого конденсатора в стабилизаторе напряжения является фильтрация и поддержание выходного напряжения во время изменений нагрузки, в стабилизаторе тока он служит только для фильтрации переменной составляющей тока. Контур управления преобразователем также затруднен.

В режиме управления пиковым током импеданс нагрузки сильно влияет на усиление постоянного тока, а также на полярность цепи управления передатчика. Сопротивление нагрузки стабилизатора напряжения определяется делением выходного напряжения на выходной ток. Его можно определить по графику зависимости напряжения от тока, касаясь касательного наклона в точке, определяемой током проводимости.

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

Как показано на рисунке 2, контур обратной связи в стабилизаторе тока включает сопротивление нагрузки, закрывающее контур управления. Независимо от того, как диммирование, регулирование линейного тока или включение и выключение на высоких частотах, система требует широкого диапазона частот и быстрого реагирования, таких как стабилизаторы напряжения.

Проблемы снижения

Например, автомобили оснащены дневными ходовыми огнями. Если необходимо использовать стабилизатор с понижающим регулятором, самым сложным решением будет выбор решения. Основное различие между любыми возможными понижающими и понижающими или увеличивающимися стабилизаторами заключается в том, что в этом первом входе он никогда не подключается непосредственно к выходу. В части цикла переключения вход и выход обоих стабилизаторов понижения и усиления соединены вместе, и, следовательно, их эффективность выше.

1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

С другой стороны, в стабилизаторах, которые уменьшают нагрузку, энергия сохраняется в магнитном или электрическом поле, что приводит к более высокому пиковому току или более высокому напряжению на переключателях. Это означает, что понижающий и повышающий стабилизатор больше и менее эффективен, чем тот же понижающий или повышающий стабилизатор мощности с одинаковой выходной мощностью.

Опускание и поднятие питания «с высокой стороны» и «с низкой стороны». Недостатком этой конструкции является то, что выходное напряжение либо инвертируется относительно входа, либо стабилизируется относительно входа. В этом случае системе необходимо изменить полярность выходного напряжения или сдвинуть уровень.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Полярность выходного напряжения инвертируется, как в многоэтажном малоэтажном, но выходной конденсатор не нужен. Несколько приложений требуют только включения и выключения света. Но во многих случаях необходимо регулировать интенсивность от нуля до 100%, часто с высокой точностью. У дизайнера есть два варианта: линейное регулирование тока или использование систем переключения с достаточно большой частотой, чтобы глаза могли усредняться по интенсивности. Использование широтно-импульсной модуляции для синхронизации и коэффициента заполнения является самым простым способом диммирования цифрового сигнала, а стабилизатор понижения обеспечивает наилучшую производительность.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Но изменение температуры белого света легко заметно. С точки зрения встроенных источников питания аналоговое затемнение создает много трудностей в достижении точного регулирования тока. Допуски элементов, сдвиги и задержки в источнике питания делают ошибки довольно фиксированными. А это, в свою очередь, уменьшает точность выходного тока, поэтому этот ток трудно определить, контролировать и гарантировать.

Частота и коэффициент контрастности

Задержка в затемнении. Существует три типа задержки. Чем дольше они, тем ниже коэффициент контрастности. Верхний предел определяет минимально необходимый коэффициент контрастности. Это значение может быть выражено как обратное к минимальному времени проводимости.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Для промышленного телевидения часто требуется гораздо более высокая частота затемнения, потому что время отклика быстрой камеры или датчика намного короче человеческого глаза. Быстрое включение и выключение источников света в этих приложениях не предназначено для уменьшения интенсивности света, а для синхронизации с временем экспозиции камеры или датчика.

Диммирование импульсным стабилизатором

Понижающие преобразователи доминируют над другими типами импульсных стабилизаторов с точки зрения скорости метастазов по двум разным причинам. Во-первых, стабилизатор понижения является единственным, который подает ток на выход, когда переключатель управления включен. Поток тока во время включения коммутатора также легче адаптироваться к гистерезисному управлению, что даже быстрее, чем лучший контроль цепи напряжения или тока.

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

Во-вторых, индуктивная катушка понижающего стабилизатора подключается к выходу в течение всего цикла переключения. В результате выходной ток является непрерывным, а выходной конденсатор не нужен. Без этого конденсатора понижающий стабилизатор представляет собой настоящий высокоимпедансный источник тока, способный быстро изменять выходное напряжение.

Быстрее, чем путем выхода

В быстродействующем нисходящем стабилизаторе без выходного конденсатора задержка включения и выключения выходного тока зависит от задержки распространения в системе и от физических выходных характеристик индуктора. Несмотря на его включение, стабилизатор не прерывает работу и ток течет через индуктивность. Как и в случае регулировки яркости, скорость преобразователя зависит от скорости контура управления. Наилучшие результаты получены с помощью стабилизатора с малыми потерями с гистерезисным контролем.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.


Стороны прямоугольника, мм: 3×2; 5×2.

Это связано с тем, что режим непрерывной линии не имеет широкой полосы контуров управления, требуемых в стабилизированных синхронизаторах. Также помните, что стабилизатор выходного напряжения не может быть ниже входного напряжения. Это приводит к короткому замыканию на входе и предотвращает затемнение параллельного транзистора.

Стабилизатор с последовательным переключателем затемнения. Если это невозможно из-за размера и стоимости, вы можете использовать последовательный преобразователь прерываний на чертеже. Однако особое внимание должно быть уделено системному отклику. Такое внезапное открытие схемы обеспечивает чрезвычайно быстрое измерение с одновременным прерыванием цепи обратной связи и постоянным увеличением выходного напряжения стабилизатора.

Это связано с тем, что режим непрерывной линии не имеет широкой полосы контуров управления, требуемых в стабилизированных синхронизаторах. Также помните, что стабилизатор выходного напряжения не может быть ниже входного напряжения. Это приводит к короткому замыканию на входе и предотвращает затемнение параллельного транзистора.


Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.


Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.


Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.


Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.


Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.


С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Светодиоды , или светоизлучающие диоды (СИД, в английском варианте LED - light emitting diode)- полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Достоинства

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки

1. относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. малый световой поток от одного элемента
3. деградация параметров светодиодов со временем
4. повышенные требования к питающему источнику

Внешний вид и основные параметры

У светодиодов есть несколько основных параметров.

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод - полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до желтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зеленого свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод ("минус"), а другой - анод ("плюс").

Светодиод будет "гореть" только при прямом включении, как показано на рисунке

При обратном включении светодиод "гореть" не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется "рабочей" зоной, так как именно здесь обеспечивается работа светодиода.


\

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Расчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В

R =(5-3)/0.02= 100 Ом = 0.1 кОм

Тоесть надо взять резистор сопротивлением 100 Ом

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, расчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт, тоесть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одигаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зеленый напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2.7 вольта 50 мА
5ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый

рассчитываем для каждой ветви резисторы

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

Важное замечание!

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, поэтому подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В "китайских" фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Важное замечание!

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Смотрите другие статьи раздела .