Как работает семисегментный индикатор


Делаем цифровую шкалу

Немножко теории
Наверное нет необходимости рассказывать, что такое 7-сегментные индикаторы. Как сложно и представить область техники, где они не применяются. Соответственно по их подключению написано масса статей, но попробую все таки написать свою:)
Итак: что же такое 7-сегментный индикатор?
Обратимся к Википедии: "Семисегме́нтный индика́тор - устройство отображения цифровой информации. Это - наиболее простая реализация индикатора, который может отображать арабские цифры.
Семисегментный индикатор, как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр. Часто семисегментные индикаторы делают в курсивном начертании."


Сегменты обозначаются буквами от A до G; восьмой сегмент - десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел.

По сути говоря данный индикатор - это 8 светодиодов расположенных на панели определенным образом.
Соответственно самая простая схема включения - подсоединить все 8 ножек на выводы микроконтроллера (микросхемы - дешифратора) через балластные резисторы, а на общий провод подавать либо "+" (для индикаторов с общим анодом) либо "-" (для индикаторов с общим катодом).
Пример подключения индикатора с общим анодом для схемы индикации включенной передачи АКПП Лансера приведен ниже



А как быть, если нужно выводить не 1 цифру, а 2,3,4 и более?
И вот тут на помощь приходит человеческая психика. Если мозгу показать несколько быстросменяющихся изображений, то он не успев обработать каждое по отдельности "сольет" их вместе. Этот принцип лег в основу мультипликации. Т.е. для вывода нескольких разрядов (нескольких цифр) нужно подключить к микроконтроллеру не только провода сегментов, но и общие провода каждого из разрядов. Тогда чтобы вывести первый разряд (опять же для схемы с общим анодом) нужно подать "+" только на общий провод первого разряда и "-" на нужные провода сегментов. Задержать изображение на 2-3 милисекунды, переключится на второй разряд и проделать то же самое с ним, поле чего перейти на третий (четвертый и т.д.) или вернутся к первому. Проделывая все это достаточно быстро мы получим в мозгу единую картинку, где все разряды горят одновременно. Для схемы с общим катодом, соответственно, перекидывать нужно "-".



Кстати, транзисторы в этой схеме необязательны - можно подключить выводы индикатора непосредственно к выводам микроконтроллера и затем не подавать на них напряжение (выводы 8-10 данной схемы), а наоборот "притягивать к земле" выводя на них "низкое" напряжение или попросту говоря 0. А "высокое" напряжение (или 1) подается на общие выводы разрядов, которые не должны в данный момент гореть.
Более подробно о таком способе подключения написано здесь - arduino-kit.com.ua/instru…-indikator-i-arduino.html

В чем же "бяка" данной схемы? А в том, что для вывода например трехразрядного числа нужно задействовать 11 ножек микроконтроллера, причем 7 из них, чтобы не раздувать программу, должны относится к одному порту.
Все это хорошо, но, например, у Attiny2313 такой только порт В на котором "висят" и оба входа аналогового компаратора.
И вот тут на помощь приходят специальные драйверы.
Чаще всего применяют драйвера MAX7219 и MAX7221, управляемые по SPI. Материал по работе с этими драйверами разместил недавно serdgos тут - . Поэтому повторятся не буду - желающие могут почитать. Данные драйвера позволяют уменьшить количество задействованных выводом, но опять же требуют использования дополнительной библиотеки и "привязаны" к строго определенным ножкам микроконтроллера. А есть ли более "хардкорные" решения? Оказывается есть - драйвер CD4026.

Описание Драйвера
Чип CD4026 предназначен для управления 7-сегментными индикаторами и представляет собой счётчик до десятка с встроенным сдвиговым регистром.

Счётчик увеличивается на единицу всякий раз, когда контакт «clock» становится HIGH (на восходящем фронте). Выходы a-g становятся HIGH в соответствии со значением счётчика, и отражают его значение арабской цифрой при подключении 7-сегментного индикатора с общим катодом.


Контакт «reset» должен быть притянут к земле в общем случае. Когда он становится HIGH, счётчик сбрасывается в ноль.
Контакт «disable clock» также должен быть притянут к земле в общем случае. На время пока он HIGH сигналы на контакт «clock» игнорируются.
Контакт «enable display» должен снабжаться напряжением питания. Иначе выходы a-g будут выставлены в LOW. Контакт «enable out» возвращает его значение с небольшой задержкой.
Контакт «÷10» (обозначен как h в таблице) принимает HIGH для значений 0-4 и LOW для 5-9. Его выход может быть отправлен на вход «clock» следующего 7-сегментного драйвера, чтобы организовать счётчик числа с несколькими разрядами.
Контакт «not 2» принимает значениние LOW тогда и только тогда, когда значение счётчика - 2. В остальных случаях он HIGH.
Рабочее напряжение питания: 3-15 В.

В качестве источника сигнала выступал Arduino Pro Micro c задействованными выводами
Pin2 Выход на счетчик
Pin3 Сброс счетчика
Pin4 Подключение разряда 1
Pin6 Подключение разряда 2
Pin9 Подключение разряда 3
Точку не подключал, ибо сейчас ненужно, а принцип подключения тот же.

Программа
Так как задействовано Arduino. то и язык соответствующий - модифицированный С.
Прога секундомера, считающего секунды с момента включения, "накидана по быстрячку" чтобы проверить работоспособность, поэтому слегка корява - уж извините.

#define CLOCK_PIN 2
#define RESET_PIN 3
#define DIGIT_1PIN 4
#define DIGIT_2PIN 6
#define DIGIT_3PIN 9

void resetNumber()
{
// Для сброса на мгновение ставим контакт
// reset в HIGH и возвращаем обратно в LOW
digitalWrite(RESET_PIN, HIGH);
digitalWrite(RESET_PIN, LOW);
digitalWrite(DIGIT_1PIN, HIGH);
digitalWrite(DIGIT_2PIN, HIGH);
digitalWrite(DIGIT_3PIN, HIGH);
}
void showNumber(float t)
{ int n;
// Первым делом обнуляем текущее значение
resetNumber();
// Выводим первый разряд
digitalWrite(DIGIT_1PIN, LOW);
n=int(t-int(t/10)*10);

// значения
while (n--) {

digitalWrite(CLOCK_PIN, LOW);
}
delay(2);
// Обнуляем счетчик
resetNumber();
// Выводим второй разряд
digitalWrite(DIGIT_2PIN, LOW);
n=int(t/10-int(t/100)*10);
// Далее быстро «прокликиваем» счётчик до нужного
// значения
while (n--) {
digitalWrite(CLOCK_PIN, HIGH);
digitalWrite(CLOCK_PIN, LOW);
}
delay(2);
// Обнуляем счетчик
resetNumber();
// Выводим третий разряд
digitalWrite(DIGIT_3PIN, LOW);
n=int(t/100);
// Далее быстро «прокликиваем» счётчик до нужного
// значения
while (n--) {
digitalWrite(CLOCK_PIN, HIGH);
digitalWrite(CLOCK_PIN, LOW);
}
delay(2);

}
void setup() {
pinMode(RESET_PIN, OUTPUT);
pinMode(CLOCK_PIN, OUTPUT);
pinMode(DIGIT_1PIN, OUTPUT);
pinMode(DIGIT_2PIN, OUTPUT);
pinMode(DIGIT_3PIN, OUTPUT);

// Обнуляем счётчик при старте, чтобы он не оказался
// в случайном состоянии
resetNumber();
}

// Основной цикл
void loop()
{
showNumber((millis() / 1000));
}

Ну и результат

Можно еще сократить количество выводов, задействовав сдвиговые регистры, но об этом мы поговорим отдельно:)

1 год

Со времен появления радиотехники и электроники обратная связь электронного устройства и человека сопровождалась различными сигнальными лампочками, кнопками, тумблерами, звонками (сигнал готовности микроволновки - дзынь!). Некоторые электронные девайсы выдают минимум информации, потому как больше было бы излишним. Например, светящийся светодиодик у вашей китайской зарядки для телефона говорит о том, что зарядка включена в сеть и в нее поступает напряжение. Но есть и такие параметры, для которых было бы удобнее выдавать объективную информацию. Например, температура воздуха на улице или время на будильнике. Да, все это можно было бы сделать также на светящихся лампочках или светодиодах. Один градус - один горящий диодик или лампочка. Сколько градусов - столько и горящих индикаторов. Считать эти светлячки - это дело может быть и привычное, но сколько опять же надо будет таких светиков, чтобы показать температуру с точностью до десятой доли градуса? Да и вообще, какую площадь будут занимать эти светодиоды и лампочки на электронном девайсе?

И вот в начале двадцатого века, с появлением электронных ламп появились первые газоразрядные индикаторы

С помощью таких индикаторов можно было вывести цифровую информацию в арабских цифрах. Раньше именно на этих лампах делали различную индикацию для приборов и других электронных устройств. В настоящее время газоразрядные элементы почти уже нигде не применяются. Но ретро - это всегда модно, поэтому многие радиолюбители собирают для себя и своих близких прекрасные часики на газоразрядниках .



Минусы газоразрядных ламп - кушают много. Про долговечность можно и поспорить. У нас в универе до сих пор в лаборантских кабинетах эксплуатируют частотомеры на газоразрядниках.

С появлением светодиодов ситуация изменилась кардинально. Светодиоды сами по себе жрут маленький ток. Если расставить их в нужное положение, то можно высвечивать абсолютно любую информацию. Для того, чтобы высветить все арабские цифры было достаточно всего-то семь (отсюда и название семисегментного индикатора ) светящихся светодиодных полосочек, выставленных определенным образом:

почти ко всем таким семисегментным индикаторам добавляют также и восьмой сегмент - точку, для того, чтобы можно было показать целое и дробное значение какого-либо параметра

по идее получается восьми сегментный индикатор, но по-старинке его также называют семисегментным, и ошибки в этом нет.

Короче, семисегментный индикатор - это светодиоды, расположенные друг относительно друга в определенном порядке и запендюренные в один корпус.

Если рассмотреть схему одиночного семисегментного индикатора, то она выглядит вот так:



Как мы видим, семисегментный индикатор может быть как с общим анодом (ОА) , так и с общим катодом (ОК) . Грубо говоря, если семисегментник у нас с общим анодом (ОА), то в схеме мы должны на этот вывод вешать "плюс", а если с общим катодом (ОК) - то "минус" или землю. На какой вывод мы подадим напряжение, такой светодиодик у нас и загорится. Давайте все это продемонстрируем на практике.

У нас имеются в наличии вот такие светодиодные индикаторы:



Как мы видим, семисегментники могут быть одиночные и многоразрядные, то есть две, три, четыре семисегментника в одном корпусе. Для того, чтобы проверить современный семисегментник, нам достаточно мультиметра с функцией прозвонки диодов. Ищем общий вывод - это может быть или ОА или ОК - методом тыка и потом уже смотрим работоспособность всех сегментов индикатора. Проверяем трехразрядный семисегментник:



Опаньки, у нас загорелся один сегмент, таким же образом проверяем и другие сегменты.

Иногда напряжения на мультике не хватает, чтобы проверить сегменты индикатора. Поэтому берем Блок питания , выставляем на нем 5 Вольт, цепляем к одной клемме блока питания резистор 1-2 килоОма и начинаем проверять семисегментник.



Для чего же нам резистор? При подаче на светодиодик напряжения он начинает резко жрать ток при включении. Поэтому в этот момент он может перегореть. Чтобы ограничить ток, последовательно со светодиодом включается в цепь резистор. Более подробно можно прочитать в этой статье.

Таким же образом проверяем четырехразрядный семисегментник с китайского радиоприемника



Думаю, особых затруднений с этим возникать не должно. В схемах семисегментники цепляются с резисторами на каждом выводе. Это тоже связано с тем, что светодиодики при подаче напряжения на них бешенно жрут ток и выгорают.

В нашем современном мире семисегментники уже заменяются жк-индикаторами, которые могут высвечивать абсолютно различную информацию

но для того, чтобы их использовать, нужны определенные навыки в схемотехнике таких устройств. Пока что проще и дешевле светодиодных семисегментных индикаторов ничего нет.

Что-то давно не было обзоров про Arduino-мелочевку.
Сегодня дошли руки до этих деталек и решил их «обозреть»

Тех, кого пугают страшные слова из радиотехники - под кат прошу не заглядывать. дабы не терять свое драгоценное время зря.

Для небольших поделок с Ардуино-образными и другими контроллерами есть множество решений по отображению информации.


Ставить можно от простейших светодиодов, до сложных табло и сенсорных панелей.
В лично мне понравились светодиодные семисегментные индикаторы требуемой разрядности.
Они достаточно яркие, их видно хорошо на большом расстоянии и они достаточно просты в работе.

Если подключать такой индикатор напрямую к микроконтроллеру - тратится очень много дискретных выходов. Для подключения семисегментных и матричных индикаторов по 3-м проводам компания MAXIM разработала контроллеры MAX7219/MAX7221. Вот об этой связке будет мой обзор.

Сразу скажу, что для тех кто не любит паять, продаются



Я такой тоже использовал в , но мне не понравились большие габариты дисплея (особенно по высоте).

Индикаторы приехали в Пермь за 33 дня. Были упакованы в простой мягкий пакет. Ножки воткнуты в кусок пенопласта. Почта России их пощадила:


Размеры 40x16. Размер цифры около 10мм










Количество ножек - 12: 7 сегментов/анодов + точка-анод + 4 общих катода по числу разрядов
Шаг между ножками 2.54мм

Распиновка ножек индикатора


Драйвера MAX7219 приехали за 35 дней тоже в мелком пакете, наколотые на паролонину.


Планирую купить +47 Добавить в избранное Обзор понравился +37 +97

Светодиод (или светоизлучающий диод) представляет собой оптический диод, излучающий световую энергию в виде «фотонов», если он смещен в прямом направлении. В электронике мы называем этот процесс электролюминесценцией. Цвет видимого света, излучаемого СИД, лежит в диапазоне от синего до красного и определяется спектральной излучаемого света, которая, в свою очередь, зависит от различных примесей, которые добавляются в полупроводниковые материалы в процессе их производства.

Светодиоды имеют много преимуществ по сравнению с традиционными лампами и светильниками, и, пожалуй, самым главным из них является их небольшой размер, долговечность, различные цвета, дешевизна и легкая доступность, способность легко взаимодействовать с различными другими электронными компонентами в цифровых схемах.

Но главное преимущество светодиодов состоит в том, что благодаря их малому размеру, некоторые из них могут быть сосредоточены в одном компактном корпусе, образуя так называемый семисегментный индикатор.

Семисегментный индикатор состоит из семи светодиодов (отсюда и его название), расположенных прямоугольником, как показано на рисунке. Каждый из семи светодиодов называется сегментом, поскольку при свечении сегмент образует часть цифры (десятичной или 12-ричной Иногда в пределах одного пакета используется 8-й дополнительной светодиод. Он служит для отображения десятичной точки (DP), позволяя, таким образом, отображать если два или более 7-сегментных индикаторов соединены вместе для представления чисел больше десяти.

Каждый из семи светодиодных сегментов дисплея соединен с соответствующей площадкой контактного ряда, расположенного прямо на прямоугольном пластиковом корпусе индикатора. Светодиодные контакты промаркированы метками от a до g, представляющими каждый отдельный сегмент. Другие контакты светодиодных сегментов соединены между собой и образуют общий вывод.

Итак, прямое смещение, поданное на соответствующие контакты светодиодных сегментов в определенном порядке, заставит некоторые сегменты светиться, а остальные останутся затемненными, что позволяет высветить нужный символ шаблона числа, которое будет отображено на дисплее. Это и позволяет нам представлять каждую из десяти десятичных цифр от 0 до 9 на 7-сегментном индикаторе.

Общий вывод, как правило, используется для определения типа 7-сегментного дисплея. Каждый светодиод дисплея имеет два соединительных вывода, один их которых называется "анод", а другой, соответственно, носит название "катод". Поэтому светодиодный семисегментный индикатор может иметь два типа схемотехнического исполнения - с общий катодом (ОК) и с общим анодом (ОА).

Разница между этими двумя типами дисплеев заключается в том, что в конструкции с ОК катоды всех 7 сегментов непосредственно соединены друг с другом, а в схеме с общим (ОА) анодом между собой соединены аноды всех 7 сегментов. Обе схемы работают следующим образом.

  • Общий катод (ОК) - соединенные между собой катоды всех светодиодных сегментов имеет уровень логического "0" или подключен к общему проводу. Отдельные сегменты высвечиваются подачей на их анодный вывод сигнала "высокого" логического уровня или логической "1" через ограничительный резистор для создания прямого смещения отдельных светодиодов.
  • Общий анод (ОА) - аноды всех светодиодных сегментов объединены и имеют уровень логической "1". Отдельные сегменты индикатора светятся при соединении каждого конкретного катода с землей, логическим "0" или низкопотенциальным сигналом через соответствующий ограничительный резистор.

В целом семисегментные индикаторы с общим анодом более популярны, так как многие логические схемы могут потребовать больше тока, чем способен отдать источник питания. Также отметим, что дисплей с общим катодом не является прямой заменой в цепи для дисплея с общим анодом. И наоборот - это равноценно включению светодиодов в обратном направлении, и, следовательно, излучение света не произойдет.

Хотя 7-сегментный индикатор можно рассматривать как единый дисплей, он все-таки состоит из семи отдельных светодиодов в рамках одного пакета, и как таковые эти светодиоды нуждаются в защите от перегрузки по току. Светодиоды излучают свет только тогда, когда они смещены в прямом направлении, а количество излучаемого ими света пропорционально прямому току. Это означает только то, что интенсивность свечения светодиода возрастает примерно линейно с увеличением тока. Так что, во избежание повреждения светодиода, этот прямой ток должен контролироваться и ограничиваться до безопасного значения внешним ограничительным резистором.

Такие семисегментные индикаторы называются статическими. Существенным их недостатком является большое количество выводов в пакете. Для устранения этого недостатка применяются схемы динамического управления семисегментными индикаторами.

Семисегментный индикатор завоевал большую популярность среди радиолюбителей, поскольку он удобен в использовании и легок для восприятия.


Динамическая индикация

Итак, девочки и мальчики, сегодня дядя Сережа расскажет о том, как соорудить динамическую индикацию в домашних условиях, че это ваще такое, и зачем оно нам.

Не вдаваясь в нудные предисловия скажем так:

Динамическая индикация – это метод отображения целостной картины через быстрое последовательное отображение отдельных элементов этой картины. Причем, «целостность» восприятия получается благодаря инерционности человеческого зрения.

На этом принципе, как вы догадываетесь, построено кино и телевидение. Не слишком занудно?

Поконкретнее.

Скажем, нам нужно организовать вывод какого-то числа на 7-сегментные индикаторы. Ну, например, мы делаем часы, или термометр, или еще чего-нибудь. Давайте посчитаем, сколько понадобится проводов, чтобы подключить индикаторы.

Кстати, индикаторы выглядят примерно вот так:

Уделим пару слов увиденному.

Перед нами – самый обычный светодиодный 7-сегментный индикатор. Вопрос: почему 7-сегментный, когда сегментов на самом деле – восемь? Ответ: потому что 8-й сегмент – это точка, которая не входит в изображение цифры и вообще, является необязательной. Бывают индикаторы и без точек.

Для нумерации сегментов используются латинские буквы от a до h . У всех всех всех 7-сегментных индикаторов в нашем бренном мире, сегменты нумеруются в том порядке, как это показано на рисунке, и никак иначе.

Теперь смотрим на схемы. Во-первых, почему их две? Да потому что индикаторы бывают разные. Бывают – с общим катодом (ОК), бывают – с общим анодом (ОА). Среди буржуйских более распространены, как ни странно, индикаторы с ОА. Но встречаются и с ОК. Так что – нужно быть осторожным, чтоб не спутать. Хотя, нам-то все равно. Нашими индикаторами будет управлять контроллер. А его можно запрограммировать как на работу с ОК так и с ОА. Тут сложностей нет.

У каждого индикатора – 9 ножек. С 1 по 8 – выводы сегментов, 9-я – общий. Допустим, мы хотим отображать 4-разрядное число. Надо 4 индикатора.

Арифметика маленького Пети: 8*4 = 32. То есть, нам потребуется 32 провода (не считая общие) Неслабо? Ничуть. Тем более, учитывая, что у большинства контроллеров количество каналов ввода/вывода как раз равно 32. Как-то меня не очень греет перспектива угрохать все выводы контроллера на индикацию. А вас? Ведь надо ж еще куда-то подключить кнопочки, ручечки, датчички и пр. пр. пр. а мало ли чего? Кстати, у любимого нами AT 90 s 2313 всего 15 каналов ввода/вывода. Как здесь прикажете быть? Вот тут нам и поможет динамическая индикация. Делаем очень просто: подключаем все индикаторы параллельно. Точнее, сажаем выводы сегментов на общую шину. А общие провода оставляем раздельно.

Смотрим небольшой поясняющий мультик:


Че мы делаем?

Мы последовательно подаем напряжение на адресные входы индикаторов, и одновременно выдаем в шину данных 7-сегментный код, соответствующий индикатору, активному в данный момент.

Все. Прекращаю кормить Вас баснями. Сейчас мы пишем прогу. В этой проге мы выведем на 4-разрядный индикатор число 1234. Вот тут то нам и понадобится узнанное в предыдущей главе об оперативной памяти.

Итак, я хочу, чтобы значения цифр, выводимых на индикацию, лежали в ячейках памяти. Поскольку у индикатора 4 разряда – значит цифр тоже будет 4, и соответственно, столько же ячеек памяти. Дабы не заморачиваться, мы объединяем все четыре ячейки в переменную Digit . Итак, пишем:

Include "d:\avr\avrasm\appnotes\2313def.inc" .def Temp1=R16 .def Temp2=R17 .def Temp3=R18 .def Temp4=R19 .def Temp=R20 .dseg Digit: .byte 4

Написали.
Теперь самое время определиться с портами.

Поскольку у нас на порт B уже повешены светодиоды – наверно не будет большим криминалом повесить туда еще и сегменты индикаторов.

Порт D пока что пустует – ну дык значит посадим туда общие провода. Рисуем схему:

Схему прошивки, как и договаривались, не показываем, но подразумеваем ее наличие.

В данной схеме используется два сдвоенных индикатора C562. Эти индикаторы – с общим катодом (об этом говорит буква C в названии). Будем иметь это ввиду при написании программы.

Вы можете поставить совершенно любые индикаторы, какие будут под рукой. Можно, например, поставить один счетверенный, или четыре одинарных. Также, можно ставить индикаторы с общим анодом – в программе только придется дописать пару строчек – совершенно ничего сложного…

Резисторы в шине данных взяты меньшего номинала, чем были. Зачем? Чтоб ярче светили светодиоды. Поскольку индикация динамическая, то каждый индикатор работает только 1/4 общего времени работы схемы. Глаз это воспринимает как пропорциональное уменьшение яркости свечения (т.е. – тоже в 4 раза.). Чтобы как-то компенсировать этот недостаток, на светодиоды подается завышенный ток (больше максимально допустимого). В статическом режиме этот ток может причинить светодиодам вред. Однако в динамическом режиме, кратковременные воздействия тока не столь фатальны.

Ну вот, вроде все. Теперь пишем программулину дальше.

Cseg .org 0 rjmp RESET ; Reset Handler rjmp EXT_INT0 ; IRQ0 Handler rjmp EXT_INT1 ; IRQ1 Handler rjmp TIM_CAPT1 ; Timer1 Capture Handler rjmp TIM_COMP1 ; Timer1 Compare Handler rjmp TIM_OVF1 ; Timer1 Overflow Handler rjmp TIM_OVF0 ; Timer0 Overflow Handler rjmp UART_RXC ; UART RX Complete Handler rjmp UART_DRE ; UDR Empty Handler rjmp UART_TXC ; UART TX Complete Handler rjmp ANA_COMP ; Analog Comparator Handler EXT_INT0: ret EXT_INT1: ret TIM_CAPT1: ret TIM_OVF0: ret TIM_OVF1: ret UART_RXC: ret UART_DRE: ret UART_TXC: ret ANA_COMP: ret TIM_COMP1: ret reset: ldi Temp1,RamEnd ;инициализация стека out SPL,Temp1 cli ldi Temp,0b11111111 ;настройка портов out ddrb,Temp ldi Temp,0b00001111 out ddrd,Temp ldi Temp,4 sts Digit ,Temp ;загрузка начальных сначений ldi Temp,3 sts Digit+1,Temp ldi Temp,2 sts Digit+2,Temp ldi Temp,1 sts Digit+3,Temp ;********************************************************* ;MAIN ;********************************************************* IndicCycle: rcall Display ;цикл индикации rjmp IndicCycle ;********************************************************* Display: ;последовательный вывод на индикацию содержимого;переменной Digit lds Temp1,Digit ;загружаем 0-ю ячейку ldi Temp,0b00001110 ;активируем 0-й разряд;индикации out PortD,Temp rcall Decoder ;вызываем 7-сегм. декодер out PortB,Temp1 ;выводим значение в порт rcall Delay1 ;ждем lds Temp1,Digit+1 ;и.т.д ldi Temp,0b00001101 out PortD,Temp rcall Decoder out PortB,Temp1 rcall Delay1 lds Temp1,Digit+2 ldi Temp,0b00001011 out PortD,Temp rcall Decoder out PortB,Temp1 rcall Delay1 lds Temp1,Digit+3 ldi Temp,0b00000111 out PortD,Temp rcall Decoder out PortB,Temp1 rcall Delay1 ret ;********************************************************* Decoder: ;преобразование двоичного числа;в код 7-сегментного индикатора ldi ZL,Low(DcMatrix*2) ;инициализация массива ldi ZH,High(DcMatrix*2) ldi Temp2,0 ;прибавление переменной add ZL,Temp1 ;к 0-му адресу массива adc ZH,Temp2 lpm ;загрузка значения mov Temp1,r0 ret DcMatrix: ;массив - таблица истинности декодера; hgfedcba hgfedcba .db 0b00111111,0b00000110 ;0,1 .db 0b01011011,0b01001111 ;2,3 .db 0b01100110,0b01101101 ;4,5 .db 0b01111101,0b00000111 ;6,7 .db 0b01111111,0b01101111 ;8,9 ;********************************************************* Delay1: ;цикл задержки push Temp1 push Temp2 ldi Temp1,0 ldi Temp2,50 d11: dec Temp1 brne d11 dec Temp2 brne d11 pop Temp2 pop Temp1 ret

Очень внимательно читаем программу.

Сначала мы настраиваем прерывания, порты и стек. Это стандартно.
Затем, мы записываем в переменную Digit число 1234.
Потом мы выходим в главный цикл программы. из этого цикла вызывается функция Display , которая, собственно, и занимается динамическим выведением на индикацию числа из переменной Digit . Функция состоит из 4-х похожих кусков. Эти куски различаются лишь номером вызываемой ячейки Digit и разрядом текущего индикатора.
Из каждого кусочка вызывается функция Decoder – 7-сегментный декодер. Этот декодер преобразует значение из ячейки Digit в код 7-сегментного индикатора, и передает этот код обратно функции Display , которая выводит его на индикацию.

Вот так, в общих чертах, все просто и понятно.


ID: 720

Как вам эта статья?