Электрические лампы накаливания - история, устройство, выбор. Из какого металла сделана нить в лампочке


После замыкания цепи (например, при нажатии выключателя) электрический ток начинает проходить через тело накала, которое при достижении определенной температуры испускает видимое человеческим глазом излучение. При достижении температуры 570 о С человек способен увидеть в темноте излучаемое телом красное свечение, а стандартная рабочая температура нити в лампе накаливания находится в пределах 2000-2800 °C. Чем меньше температура тела накаливания, тем более «красным» будет выглядеть излучение (подробнее о цветопередаче написано в статье). Чтобы лучше понять принцип работы обычной лампочки, необходимо разобраться в конструкции и обязательных элементах, к которым относится колба, тело накала и токовводы.

Стандартная лампочка имеет грушевидную форму и состоит из следующих частей:

  • Колба . Изготавливается из натриево-кальциевого силикатного стекла, может быть прозрачной, матовой, молочной, опаловой, зеркальной (отражающей). Если лампочка используется без плафона в маленьком помещении, то обратите внимание на лампочки с матированной или молочной колбой, так как их световые потоки на 3% и 20% соответственно меньше чем световой поток прозрачных ламп. Также колбы могут покрываться с наружной стороны декоративными красителями, лаками, керамикой.
  • Буферный газ (полость колбы). Для предотвращения окисления спирали (тела накала) из колбы выкачивают воздух, создавая внутри вакуум. Однако сегодня вакуум используется только в маломощных лампочках, а большинство современных моделей наполнены инертным газом, который увеличивает силу свечения. По составу газовой среды лампы накаливания можно разделить на: вакуумные, газонаполненные (ксенон, криптон, смесь азота с аргоном и т.д.), галогенные.
  • Тело накала . Чаще всего изготавливается из проволоки круглого сечения, реже – из ленточного металла. В первых моделях лампочек применялась угольная нить, в современных – спираль из вольфрама или осмиево-вольфрамового сплава.
  • Токовые вводы (свинцовая проволока).
  • Держатели тела накала (молибденовые держатели).
  • Ножка (штенгель и ножка лампы).
  • Внешнее звено токоввода .
  • Плавкая вставка (предохранитель)
  • Корпус цоколя .
  • Стеклянный изолятор цоколя .
  • Контакт донышка цоколя .

Какие бывают виды/типы ламп накаливания?

Классификация ламп накаливания довольно разветвленная, так как учитывает множество характеристик.

По виду цоколя самыми распространенными являются резьбовые и штырьковые. В быту чаще всего можно встретить резьбовой цоколь Эдисона, обозначающийся буквой Е, возле которой пишется его диаметр в миллиметрах, например, Е10, Е14, Е27 и Е40.

По форме колбы лампочки накаливания бывают разнообразными, начиная со стандартных грушевидных, заканчивая фигурными, витыми и др. В некоторых случаях размер и форма колбы (а также наличие светоотражающих участков) связаны с тем, где применяется лампа накаливания, в других же случаях это связано с декоративной функцией.

Лампы накаливания: характеристики и маркировка

Чтобы знать, как выбрать лампу накаливания, необходимо научиться читать ее маркировку, которая представляет собой сочетание букв и цифр. Буквенная часть маркировки указывает на свойства и конструкцию изделия, к примеру:

Б – биспиральная

БО – биспиральная с опаловой колбой, которая наполнена аргоном

БК – биспиральная, колба наполнена криптоном

ДБ – диффузная с матированием внутри колбы

В – вакуумная

Г — газонаполненная

О – с опаловой колбой

М – с молочной колбой

Ш – шаровидная

З – зеркальная (ЗК – концентрированная кривая света, ЗШ – расширенная кривая)

МО – применяемая для местного освещения

Цифрами указывается диапазон напряжения и мощность. Так, маркировку Б 220..230 60 можно расшифровать так: биспиральная лампа накаливания мощностью 60Вт, рассчитана на диапазон напряжений от 220 до 230 В.

Какие недостатки/преимущества у лампы накаливания?

К достоинствам лампочек накаливания можно отнести:

  • невысокую стоимость;
  • широкий диапазон мощностей;
  • бесперебойную работу при низком напряжении (со снижением интенсивности освещения);
  • устойчивость к незначительным перепадам напряжения (с возможным сокращением срока службы);
  • комфортную цветовую температуру (теплую);
  • возможность использовать во влажных помещениях;
  • простоту эксплуатации.

К недостаткам относится:

  • сильный нагрев (создание пожароопасной ситуации);
  • небольшой срок эксплуатации;
  • низкая светоотдача (КПД <4%)
  • зависимость светоотдачи от напряжения;
  • риск разрыва колбы;
  • хрупкость.

Как увеличить срок службы лампы накаливания?

Как уже было сказано ранее, предполагаемый производителем срок службы лампочек накаливания достигает в среднем 750-1000 часов, однако на практике перегорают они гораздо чаще. Это происходит из-за возникновения трещин и разрушения вольфрамовой нити (вследствие перегрева и испарения). Чтобы продлить срок эксплуатации лампы, следует для начала устранить возможные причины перегорания.

  1. Диапазон напряжений. Для разных ламп накаливания производители указывают не одно значение напряжения, а диапазон: 125..135, 220..230, 230..240В и т.д. Если напряжение в вашей квартирной цепи превышает указанные значение, то лампа будет перегорать быстрее, поэтому при напряжении 230В нельзя выбирать лампочку с параметрами 215..220В. Так, если напряжение выше всего на 6%, срок службы уменьшится вдвое.
  2. Вибрации. В условиях вибраций нить накала быстрее растрачивает свой ресурс, поэтому при пользовании переносными устройствами лучше осуществлять перемещения с выключенной лампочкой.
  3. Патрон. Если вы заметили, что лампочки чаще всего перегорают в одном и том же патроне, тогда следует заменить его или же проверить контакты. Также следует ставить в люстру с несколькими патронами лампы одинаковые по мощности.
  4. Понижение напряжения. Если понизить напряжение в сети всего на 8%, лампочка будет служить в 3,5 раза дольше. Для понижения можно подключить последовательно с лампой полупроводниковый диод.

Самая долгогорящая лампочка накаливания имеет название «Столетняя лампа», находится она в пожарной части в Ливерморе (Калифорния). За счет работы на очень низкой мощности (4 ватта), толстой нити накала из углерода (в 8 раз толще, чем в обычных лампочках нашего времени), а также бесперебойному использованию без выключений и включений она работает там с 1901 года.

Как подключить лампу накаливания через диод

Чтобы продлить срок службы лампочки (а заодно и сэкономить на электричестве) можно подключить ее через диод. При выборе диода необходимо обратить внимание на такие его параметры, как максимальный прямой ток (+ в импульсе) и максимальное обратное напряжение. Чтобы облегчить задачу и не просчитывать все параметры, приведем табличку:

Для сборки конструкции понадобится:

  • 1 работающая лампочка Е27
  • 1 неработающая лампочка Е27 (или цоколь от нее);
  • диод;
  • паяльник.

Процесс сборки . Припаиваем диод к пятачку на цоколе рабочей лампочки. Аккуратно отделяем цоколь от сгоревшей лампочки, делаем в нем отверстие и продеваем сквозь него вторую «ножку» диода. Выведенный конец припаиваем к месту выведения, затем спаиваем между собой оба цоколя.

Более простой способ: подсоединить диод одним концом к клемме выключателя, а другим – к проводу, который ведет к лампочке.

Как диод продлевает срок службы лампочки накаливания?

В большинстве случаев нить накала перегорает в момент подачи питания (включения тумблера) из-за слишком быстрого нагревания холодной спирали. Полупроводниковый диод уменьшает ток и позволяет вольфраму нагреваться постепенно, с меньшей скоростью. Лампочка начинает заметно мерцать, так как ток проходит полуволнами.

Лампа накаливания – простой и дешевый источник света с приятным для человеческого глаза цветовым оттенком

Лампа накаливания применяется как источник освещения уже более сотни лет. Это – патриарх среди других ламп, освещающих жилища человека по всему свету. И несмотря на все разговоры о неактуальности применения лампы накаливания в современном мире, ее судьба еще далека от выхода в тираж. Так что же она из себя представляет?

Лампа накаливания – принцип работы

Лампа накаливания представляет соединенные между собой стеклянную колбу, откуда собственно и исходит свет, и металлический цоколь, предназначенный для контакта с питающей электросетью. В стеклянной колбе расположена спираль – нить накала. Во время работы лампы нить накала при прохождения через нее электрического тока разогревается до большой температуры, могущей достигать 3000°С. Поэтому спираль изготавливается из тугоплавкого металла, обычно вольфрама. Температура плавления вольфрама 3422°С, что вполне достаточно для работы лампы накаливания.

Лампа накаливания – устройство (Нажмите для увеличения)

Нить накала внутри колбы обычно закреплена на двух никелевых контактах – электродах и поддерживается молибденовыми крючками – держателями, расположенными на стеклянном стержне.

Электроды, контактирующие с нитью накала, соединяются с двумя контактами на цоколе лампы. Расположение и вид контактов на цоколе лампы зависит от вида применяемого цоколя.

Иногда на одном из электродов делается специальное утоньшение, заключенное в стеклянную полость. Это утоньшение служит предохранителем, который в аварийной ситуации перегорает первым, что позволяет избежать взрыва стеклянной колбы лампы.

Из самой же колбы через стеклянную трубочку – штенгель откачивается воздух, после чего конец штенгеля запаивается. Воздух содержит кислород, поддерживающий горение, поэтому вольфрамовая спираль при работе в воздухе сгорела бы, не прослужив и секунды. Создание вакуума внутри колбы значительно продлевает срок службы лампы накаливания.

Но это справедливо лишь для маломощных ламп до 25ватт. Для более мощных ламп в колбу, дополнительно с откачкой воздуха, закачивается какой-нибудь инертный газ – ксенон, аргон или криптон. В основном применяется более дешевый, чем ксенон, криптон. Или еще более дешевый аргон, для большей экономии смешанный с азотом. Инертный газ позволяет нити накаливания прослужить более длительное время.

Это общее устройство ламп накаливания немного различно для разных типов ламп.

Виды ламп накаливания

Лампы накаливания подразделяются на лампы общего назначения, железнодорожные, автомобильные, судовые, для киноаппаратов, рудничные, маячные и на еще множество разных типов.

В зависимости от назначения у ламп накаливания может быть различного вида форма колба – конусная, цилиндрическая, шарообразная. Все зависит от того в каком типе светильников будет применяться лампа. Есть множество декоративных ламп накаливания, фантастичность форм которых зависит только от пределов фантазии дизайнера.

Колба лампы накаливания может быть не только прозрачной, но и матовой, зеркальной или цветной.

Различаются лампы накаливания и нитью накала, в том числе и толщиной нити. Нить накала может быть простой спиралью и спиралью, свернутой в спираль вторично, так называемые биспиральные лампы. Двойная спираль позволяет повысить мощность и яркость лампы без увеличения толщины нити накала, что привело бы к перегреву и более быстрому перегоранию нити. Биспиральные лампы также дают увеличение яркости без увеличения длины спирали, что привело бы к усложнению и удорожания конструкции лампы, хотя в некоторых случаях нить накала в колбе лампы может представлять собой ажурно-скрученную, паутинообразную конструкцию. Такое устройство спирали может использоваться в декоративных целях, например в . Существуют особо мощные лампы накаливания в несколько тысяч ватт, применяемые в прожекторах. Такие лампы имеют тройную спираль.

Лампы накаливания могут иметь также различные виды цоколя. Самые распространенные – резьбовые цоколи – обозначаются латинской буквой E (цоколь Эдисона) и цоколи байонетного типа – обозначаются латинской буквой B. Цоколи байонетного типа (штифтовой цоколь) с двумя боковыми штырьками – контактами, и с одним или двумя дополнительными нижними контактами, обычно применяются в автомобилях. Для ламп накаливания, применяющихся для освещения дома, – это резьбовой цоколь E двух типов размеров: Е14 (миньон) и обычный средний цоколь – Е27 (число указывает внешний диаметр цоколя в миллиметрах), наиболее узнаваемый каждым человеком, знакомым с определением «лампочка Ильича». Большой цоколь E40 применяется обычно в производстве, а в быту, пожалуй, только в прожекторах.

Характеристики ламп накаливания

Характеристики ламп накаливания находятся в зависимости от толщины и вида нити накала, колбы лампы, применяемого цоколя, отсутствия или наличия в колбе инертного газа.

Чем больше толщина нити накала, тем более мощной, а соответственно и яркой будет лампа накаливания. Чем мощнее будет лампа, тем больше будет размер ее колбы и при превышении границы мощности в 25 ватт понадобится добавление в колбу лампы инертного газа.

От того, какой инертный газ будет добавлен в колбу, зависит яркость лампы накаливания. Наименьшую яркость имеют лампы накаливания наполненные аргон-азотной смесью. Закачка в колбу лампы криптона немного повышает яркость свечения лампы. А добавление ксенона повышает яркость, по сравнению с аргоновыми лампами в два раза.

Устройство ламп накаливания для применения в сетях переменного и постоянного тока практически не отличается друг от друга. То есть лампы для переменного тока будут работать и при постоянном токе. И соответственно наоборот. Все различие между ними в величине напряжения на которое они рассчитаны. Если лампу накаливания, изготовленную для работы при определенном напряжении, включить в сеть с напряжением выше номинала данной лампы, то лампа естественно перегорит. Насколько быстро это произойдет, зависит от того, на сколько больше напряжение сети номинала лампы. Если напряжение сети больше номинала хотя бы раза в два, то лампа накаливания при включении мгновенно буквально взорвется осколками стекла. При включении лампы накаливания в сеть с пониженным напряжением лампа будет светить слабее, чем ей предназначено, или не будет работать вовсе, если напряжение слишком мало.

Обычно лампы накаливания на напряжение ниже 220 вольт применяют в сетях постоянного тока. За некоторым исключением для специальных ламп, применяемым, например, на судах или на железной дороге.

Лампы накаливания, на которых нанесено обозначение ровно 220 вольт, стоит применять только в сети со стабильным напряжением, например, при использовании хорошего стабилизатора напряжения. При использовании таких ламп накаливания в сети с постоянными перепадами напряжения, лампы весьма быстро выйдут из строя. При перепадах напряжения в сети применяют лампы накаливания с обозначением 230-240 вольт или еще лучше 235-245 вольт. Такие лампы в условиях нестабильного напряжения прослужат значительно дольше, но с другой стороны при наличии стабилизатора регулирующего постоянное напряжение 220 вольт они будут светить слабее, чем рассчитаны.

Удачи Вам в устройстве Удобного Дома! С уважением

Лампа накаливания — осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического тока.

Принцип действия

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина ). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 6000 K (температура поверхности Солнца ). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 6000 K недостижима, т. к. при такой температуре любой материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампочки делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

Конструкция

Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, ограждающей нить накала от окружающей среды.

Колба

Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.

Буферный газ

Колбы первых ламп были вакуумированы. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Возникающие при этом, за счёт теплопроводности, потери тепла, уменьшают путём выбора газа по возможности с наиболее тяжелыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (атомные веса: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)

Нить накала

Нить накала в первых лампочках делалась из угля (точка сублимации 3559 °C). В современных лампочках применяются почти исключительно спирали из осмиево-вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя.

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I = U / R) и мощность по формуле P=U\cdot I, или P = U2 / R. При мощности 60 Вт и рабочем напряжении 230 В через лампочку должен протекать ток 0,26 А, т. е. сопротивление нити накала должно составлять 882 Ома. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампочках составляет 40—50 микрон.

Т. к. при включении нить накала находится при комнатной температуре, её сопротивление много меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в два-три раза больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало.

В мигающих лампочках последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампочки самостоятельно работают в мигающем режиме.

Цоколь

Форма цоколя с резьбой обычной лампы накаливания была предложена Томасом Альвой Эдисоном . Размеры цоколей стандартизированы.

Предохранитель

Плавкий предохранитель (отрезок тонкой проволоки) расположен в цоколе лампы накаливания, предназначен для предотвращения возникновения электрической дуги в момент перегорания лампы. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А.

КПД и долговечность

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне, и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. При увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим уменьшается время жизни на 95 %.

Уменьшение напряжения в два раза (напр. при последовательном включении) хотя и уменьшает КПД, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда надо обеспечить надежное дежурное освещение без особых требований к яркости, например, на лестничных площадках.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Галогенные лампы

Добавление в буферный газ галогенов брома или йода повышает время жизни лампы до 2000—4000 часов. При этом рабочая температура составляет примернно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.

Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.

Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла больше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать в очень компактном виде. Маленький объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжелыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.

Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения. Также из-за высокой температуры, колбы изготавливаются из кварца.

Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы OSRAM, потребление энергии снижается на 45 %, а время жизни удваивается (по сравнению с обычной галогенной лампой).

Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света, их преимущество состоит в том, что они могут использоваться как прямая замена обычных галогенных ламп.

Специальные лампы

    Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную температуру нити (и соответственно, повышенную яркость и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.

    Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.

История изобретения

    В 1854 г. немецкий изобретатель Генрих Гебель разработал первую «современную» лампочку: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампочкой.

    11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд

    Английский изобретатель Джозеф Вильсон Сван получил в 1878 г. британский патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

    Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу в которой он пробует в качестве нити различные металлы. В конце-концов он возвращается к угольному волокну и создаёт лампочку с временем жизни 40 часов. Несмотря на столь непродолжительное время жизни его лампочки вытесняют использовавшееся до тех пор газовое освещение.

    В 1890-х годах Лодыгин изобретает несколько типов ламп с металлическими нитями накала.

    В 1906 г. Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

    В 1910 г. Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

    Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром , который, работая с 1909 г. в фирме General Electric , придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.

Нагретое электрическим током тело может, оказывается, не только излучать тепло, но и светиться. Первые источники света функционировали именно на этом принципе. Рассмотрим, как работает лампа накаливания – самый массовый осветительный прибор в мире. И, хотя его со временем предстоит полностью заместить на компактные люминесцентные (энергосберегающие) и светодиодные источники света, без этой технологии человечеству еще долго не обойтись.

Конструкция лампы накаливания

Основным элементом лампочки является спираль из тугоплавкого материала – вольфрама. Для увеличения ее длины и, соответственно, сопротивления, она скручена в тонкую спираль. Это не видно невооруженным глазом.

Спираль укреплена на поддерживающих элементах, крайние из которых служат для присоединения ее концов к электрической цепи. Они изготовлены из молибдена, температура плавления которого выше температуры разогретой спирали. Один из молибденовых электродов соединяется с резьбовой частью цоколя, а другой – с его центральным выводом.

Молибденовые держатели удерживают вольфрамовую спираль

Из колбы, сделанной из стекла, выкачан воздух. Иногда внутрь вместо воздуха закачивают инертный газ, например, аргон или его смесь с азотом. Это необходимо для снижения теплопроводности внутреннего объема, в результате чего стекло менее подвержено нагреву. Дополнительно эта мера препятствует окислению нити накала. При изготовлении лампы воздух выкачивается через часть колбы, скрытую затем цоколем.

Принцип работы лампы накаливания основан на разогреве электрическим током ее нити до температуры, при которой она начинает излучать свет в окружающее пространство.

Лампы накаливания можно изготовить на мощность от 15 до 750 Вт. В зависимости от мощности применяются разные типы резьбовых цоколей: Е10, Е14, Е27 или Е40. Для декоративных, сигнальных и ламп подсветки используются цоколи ВА7S, ВА9S, ВА15S. Такие изделия при установке втыкаются внутрь патрона и поворачиваются на 90 градусов.

Помимо обычной, грушеобразной формы, выпускаются и декоративные лампы, у которых колба выполняется в форме свечи, капли, цилиндра, шара.

Лампа с колбой, не имеющей покрытия, светится желтоватым светом, по составу наиболее напоминающим солнечный. Но при нанесении на внутреннюю поверхность стекла специальных покрытий она может стать матовой, красной, желтой, синей или зеленой.

Интерес представляет устройство зеркальной лампы накаливания. На часть ее колбы нанесен отражающий слой. В результате, за счет отражения от него, световой поток перераспределяется в одном направлении.

Достоинства ламп накаливания

Самым важным плюсом в пользу применения лампочек накаливания является простота их изготовления и, соответственно, цена. Проще осветительного прибора придумать невозможно.

Лампы изготавливают на широкий диапазон мощностей и габаритных размеров. Все остальные современные источники света содержат устройства, преобразующие напряжение питания в необходимую для их работы величину. Хотя их и ухитряются впихнуть в стандартные габаритные размеры лампочки, но при этом усложняется конструкция, увеличивается количество деталей в составе устройства. А это не всегда улучшает показатели стоимости и надежности. Схема же включения лампы накаливания не требует никаких дополнительных элементов.

Светодиодные лампы вытеснили обычные из портативных устройств: переносных источников света, питающихся от батареек и аккумуляторов. При той же светоотдаче они потребляют меньший ток, а габаритные размеры светодиода еще меньше, чем лампочек, использующихся ранее в фонариках. Да и в составе елочных гирлянд они работают успешнее.

Стоит отметить еще одно достоинство, присущее лампочкам накаливания – их спектр свечения наиболее близок к солнечному, чем у всех остальных искусственных источников света. А это – большой плюс для зрения, ведь оно адаптировано именно к солнцу, а не монохромным светодиодам.

Из-за тепловой инерции разогретой нити накала свет от нее практически не пульсирует. Чего нельзя сказать об излучении от остальных устройств, особенно люминесцентных, использующих в качестве пускорегулирующего устройства обычный дроссель, а не полупроводниковую схему. Да и электроника, особенно дешевая, не всегда подавляет пульсации от сети должным образом. От этого тоже страдает зрение.

Но не только здоровью может повредить пульсирующий характер работы полупроводниковых устройств, использующихся в современных лампочках. Массовое их применение приводит к резкому изменению формы потребляемого от сети тока, что сказывается в итоге и на форме напряжения. Она настолько изменяется по отношению к изначальной (синусоидальной), что это сказывается на качестве работы других электроприборов в сети.

Недостатки ламп накаливания

Существенный недостаток лампочек накаливания, сокращающий их срок службы – зависимость его от величины питающего напряжения. При повышении напряжения износ нити накала происходит быстрее. Выпускают лампы на разные величины этого параметра (вплоть до 240 В), но при номинальном значении они светят хуже.

Понижение напряжения приводит к резкому изменению интенсивности свечения. А еще хуже воздействуют на осветительный прибор его колебания, при резких скачках лампа может и перегореть.

Но самое худшее – то, что нить накала рассчитана на длительную работу в нагретом состоянии. При нагревании ее удельное сопротивление увеличивается. Поэтому в момент включения, когда нить холодная, ее сопротивление намного меньше того, при котором происходит свечение. Это приводит к неизбежному скачку тока в момент зажигания, приводящему к испарению вольфрама. Чем больше количество включений – тем меньше проживет лампа.

Исправить ситуацию помогают устройства для плавного запуска или , позволяющие регулировать яркость свечения в широких пределах.

Самым главным недостатком лампочек накаливания считается их низкий коэффициент полезного действия. Подавляющая часть электроэнергии (до 96 %) расходуется на бесполезный нагрев окружающего воздуха и излучение в инфракрасном спектре. С этим поделать ничего нельзя – таков принцип действия лампы накаливания.

Ну и еще: стекло колбы легко разбить. Но в отличие от компактных люминесцентных, содержащих внутри небольшое количество паров ртути, разбитая лампа накаливания кроме возможного пореза ничем владельцу не угрожает.

Галогенные лампы

Причиной перегорания лампы накаливания является постепенное испарение фольфрама, из которого сделана нить. Она становится тоньше, а затем очередной скачок тока при включении расплавляет ее в самом тонком месте.

Этот недостаток призваны устранить галогенные лампы, заполняемые парами брома или йода. При горении испаряющийся вольфрам вступает в соединение с галогеном. Получившееся вещество не способно осаждаться на стенках колбы или других, относительно холодных, внутренних поверхностях.

Вблизи же нити накала вольфрам под действием температуры извлекается из соединения и возвращается на место.

Применением галогенов решается еще одна задача: температуру спирали можно поднять, увеличивая световую отдачу и уменьшить размеры осветительного прибора. Поэтому при той же мощности габариты галогенных ламп оказываются меньше.

Электрическая лампочка накаливания является очень важным предметом в жизни человека. С помощью нее миллионы людей могут заниматься делами независимо от времени суток. В то же время прибор очень прост в исполнении: свет испускается специальной нитью накала внутри стеклянного сосуда, из которого откачан воздух, а в ряде случаев заменен на специальный газ. Нить накала выполнена из проводника с высокой температурой плавления, что делает возможным нагрев с помощью тока до видимого свечения.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм

Как работает лампочка накаливания

Метод работы данного устройства так же прост, как и исполнение. Под воздействием электричества, пропускаемого сквозь тугоплавкий проводник, последний разогревается до большой температуры. Температура нагрева определяется подводимым к лампочке напряжением.

Следуя закону Планка нагретый проводник генерирует электромагнитное излучение. По формуле при смене температуры меняется и максимум излучения. Чем больше нагрев, тем короче длина волны испускаемого света. Другими словами, от величины температуры проводника накала в лампочке зависит цвет свечения. Длина волны видного спектра достигается при нескольких тысячах градусов по Кельвину. К слову, температура Солнца около 5000 Кельвин. Лампа с такой цветовой температурой будет светить дневным нейтральным светом. При уменьшении нагрева проводника излучение станет желтеть, затем краснеть.

В лампочке только доля энергии переходит в видный свет, остальная же преобразуется в тепло. Причем только часть светового излучения видна человеку, остальное же излучение является инфракрасным. Отсюда возникает потребность повышения температуры излучающего проводника, чтобы видимого света стало больше, а инфракрасного излучения – меньше (другими словами, увеличение КПД). Но максимальная температура проводника накаливания ограничена характеристиками проводника, что не позволяет разогреть ее до 5770 Кельвин.

Проводник из любого вещества при этом будет расплавляться, деформироваться или перестанет проводить ток. В настоящее время лампочки оснащаются вольфрамовыми нитями накаливания, выдерживающими 3410 градусов по Цельсию.
Одним из главных свойств лампы накаливания является температура свечения. Чаще всего она составляет от 2200 до 3000 Кельвин, что позволяет испускать только желтый свет, а не дневной белый.
Следует заметить, что на воздухе проводник из вольфрама при такой температуре сразу перейдет в оксид, во избежание чего нужно предотвратить контакт с кислородом. Для этого из колбы лампочки выкачивается воздух, чего хватает для создания 25-ваттных ламп. Более мощные лампочки содержат внутри себя инертный газ под давлением, что позволяет вольфраму служить дольше. Данная технология позволяет немного повысить температуру свечения лампы и приблизиться к дневному свету.

Устройство лампочки накаливания

Электрические лампочки немного различаются по конструкции, но к основным составляющим относятся нить излучающего проводника, стеклянный сосуд и выводы. У ламп специального назначения может не иметься цоколь, присутствовать иные держатели излучающего проводника, еще одна колба. В некоторых лампах накаливания также имеется предохранитель из ферроникеля, стоящий в разрыве одного из выводов.

Размещается предохранитель преимущественно в ножке. Благодаря ему колба не разрушается при обрыве излучающего проводника. При обрыве нити лампы появляется электрическая дуга, плавящая останки проводника. Расплавленное вещество проводника, попадая на стеклянную колбу, способно ее разрушить и спровоцировать возгорание. Предохранитель же разрушается от большого тока электрической дуги и прекращает плавление нити накала. Но ставить такие предохранители не стали ввиду малой эффективности.

Конструкция лампы накаливания: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Колба

Стеклянная колба лампы накаливания защищает излучающий проводник от окисления и разрушения. Размер колбы зависит от скорости осаждения материала проводника.

Газовая среда

Первые электрические лампочки выпускались с вакуумной колбой, в наше время так изготовлены только маломощные приборы. Лампы помощнее выпускаются наполненными инертным газом. От величины газовой молярной массы зависит излучение тепла проводником накаливания. Чаще всего в колбах находится смесь аргона и азота, но может быть и просто аргон, а также криптон и даже ксенон.

Молярные массы газов:

  • N2 - 28,0134 г/моль;
  • Ar: 39,948 г/моль;
  • Kr - 83,798 г/моль;
  • Xe - 131,293 г/моль;

Отдельно стоит рассмотреть галогенные лампы. В их сосуды закачиваются галогены. Вещество проводника накаливания испаряется и вступает в реакцию с галогенами. Получившиеся соединения при большой температуре вновь разлагаются и вещество возвращается на излучающий проводник. Это свойство позволяет увеличить температуру проводника, вследствие чего возрастает КПД и длительность работы лампы. Помимо этого, использование галогенов позволяет уменьшить размер колбы. Из минусов стоит отметить маленькое сопротивление проводника накала на старте.

Нить накала

Формы излучающего проводника бывают разные, в зависимости от специфики лампочки. Чаще всего в лампочках используется нить круглого сечения, но иногда может встретиться и ленточный проводник.
Первые лампочки выпускались даже с углем, нагревающимся до 3559 градусов по Цельсию. Современные лампочки комплектуются вольфрамовым проводником, иногда – осмиево-фольфрамовым. Вид спирали неслучаен – он существенно снижает габариты проводника накала. Существуют биспирали и триспирали, полученные методом повторного закручивания. Данные типы проводника накаливания делают возможным увеличение КПД за счет уменьшения теплоизлучения.

Свойства лампочки накаливания

Лампочки выпускаются для различных целей и мест установок, чем обусловлено их различие по напряжению цепи. Величина силы тока высчитывается по закону известного Ома (напряжение делим на сопротивление), а мощность с помощью несложной формулы: напряжение умножаем на ток или напряжение в квадрате делим на сопротивление. Для изготовления лампочки накаливания нужной мощности подбирается провод с необходимым сопротивлением. Обычно используется проводник толщиной 40-50 мкм.
При старте, то есть включении лампочки в сеть, происходит бросок тока (на порядок больше номинального). Это получается за счет низкой температуры нити накала. Ведь при комнатной температуре проводник имеет небольшое сопротивление. Ток снижается до номинального только при нагреве нити накала за счет увеличения сопротивления проводника. Что касается первых угольных ламп, то там было наоборот: холодная лампочка имела большее сопротивление, чем горячая.

Цоколь

Цоколь лампы накаливания имеет стандартизированные форму и размер. Благодаря этому возможна замена лампочки в люстре или другом приборе без проблем. Наиболее популярны цоколи лампочек с резьбой, имеющие маркировки E14, E27, E40. Цифры после буквы «Е» обозначает внешний диаметр цоколя. Существуют и цоколи лампочек без резьбы, удерживаемые в патроне силой трения или другими приспособлениями. Лампочки с цоколями Е14 чаще требуются при замене старых в люстрах или торшерах. Цоколь Е27 используется повсеместно – в патронах, люстрах, специальных приборах.
Обратите внимание, что в Америке напряжение цепи 110 вольт, поэтому они пользуются цоколями, отличными от европейских. В американских магазинах найдутся лампочки с цоколями Е12, Е17, Е26 и Е39. Сделано это затем, чтобы случайно не спутать европейскую лампочку, рассчитанную на 220 вольт и американскую на 110 вольт.

Коэффициент полезного действия

Энергия, подводимая к лампочке накаливания тратится не только на производство видного спектра света. Часть энергии тратится на испускание света, часть превращается в тепло, но самая большая доля тратится на инфракрасный свет, недоступный человеческому глазу. При температуре проводника накаливания 3350 Кельвин КПД лампочки всего 15%. А стандартная 60-ваттная лампа с температурой свечения 2700 Кельвин имеет КПД около 5%.
Естественно, КПД лампочки прямо зависит от степени нагрева излучающего проводника, но при более сильном нагреве нить не прослужит долго. При температуре проводника в 2700К лампочка будет светить около 1000 часов, а при нагреве до 3400К срок службы сокращается до нескольких часов. При поднятии напряжения питания лампы на 20% сила свечения увеличится примерно до 2 раз, а срок работы уменьшится аж до 95%.
Для повышения срока работы лампочки следует понизить напряжение питания, но с этим понизится и КПД прибора. При последовательном подключении лампочки накаливания будут работать до 1000 раз дольше, но их КПД окажется в 4-5 раз меньше. В некоторых случаях такой подход имеет смысл, к примеру, на лестничных пролетах. Большая яркость там не обязательна, а вот срок службы лампочек должен быть немалым.
Для достижения данной цели последовательно с лампочкой нужно включить диод. Полупроводниковый элемент позволит отсечь ток половины периода, протекающий по лампе. В результате мощность снижается наполовину, а за ней и напряжение снижается примерно в 1,5 раза.
Однако, такой способ подключения лампы накаливания невыгоден со стороны экономики. Ведь такая цепь будет потреблять больше электроэнергии, что делает выгоднее замену сгоревшей лампочки новой, нежели потраченные киловатт-часы на продление жизни старой. Поэтому для запитки лампочек накаливания подается напряжение, немного побольше номинального, что позволяет экономить электроэнергию.

Сколько служит лампа

Длительность эксплуатации лампы снижается многими факторами, например, испарением вещества с поверхности проводника или дефектами проводника накала. При разном испарении материала проводника появляются участки нити с большим сопротивлением, обуславливающим перегрев и еще интенсивнее испарение вещества. Нить накала под действием такого фактора истончается и местно целиком испаряется, чем обуславливается сгорание лампы.
Сильнее всего проводник накала изнашивается при запуске из-за броска тока. Во избежание этого применяются приборы плавного запуска лампы.
Вольфрам характеризуется удельным сопротивлением вещества в 2 раза большим, чем, например, алюминий. При подсоединении лампы в сеть ток, протекающий по ней, на порядок больше номинального. Броски тока и являются причиной перегорания лампочек накаливания. Для защиты цепи от бросков тока в лампочках иногда стоит предохранитель.

При внимательном рассмотрении электрической лампочки плавкий предохранитель виден более тонким проводником, идущим к цоколю. При включении в сеть обычной электрической 60-ваттной лампочки мощность нити накала может достигать 700 ватт и выше, а при включении 100-ваттной – более 1 киловатта. При нагреве излучающий проводник увеличивает сопротивление и мощность уменьшается до нормы.

Чтобы обеспечить плавный запуск лампы накаливания, можно воспользоваться терморезистором. Коэффициент температурного сопротивления такого резистора должен быть отрицателен. При включении в цепь терморезистор холодный и обладает большим сопротивлением, поэтому лампочка не получит полное напряжение до прогрева данного элемента. Это только основы, тема плавного подлючения лампочек накаливания огромная и требует более глубокого изучения.

Тип Относительная световая отдача % Световая отдача (Люмен/Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Источник монохроматического зелёного света с длиной волны 555 нм 100 % 683

Благодаря таблице, которая приведена ниже, можно приблизительно узнать соотношение мощности и светового потока для обычной лампочки «груши» (цоколь E27, 220 В).

Мощность (Вт) Световой поток (лм) Световая отдача (лм/Вт)
200 3100 15,5
150 2200 14,6
100 1200 13,6
75 940 12,5
60 720 12
40 420 10,5
25 230 9,2
15 90 6

Какие бывают лампочки накаливания

Как упоминалось выше, из сосуда лампы накаливания откачан воздух. В некоторых случаях (например, при маленькой мощности) колбу так и оставляют вакуумной. Но гораздо чаще лампа наполнена специальным газом, который продляет длительность работы нити накаливания и улучшает светоотдачу проводника.
По типу заполнения сосуда лампочки делят на несколько видов:
Вакуумные (все первые лампочки и маломощные современные)
Аргоновые (в ряде случаев заполняются смесью аргон+азот)
Криптоновые (данный тип лампочек на 10% сильнее светит, чем вышеупомянутые лампы с аргоном)
Ксеноновые (в таком исполнении лампы светят уже в 2 раза сильнее, чем лампы с аргоном)
Галогеновые (в сосуды таких лампочек помещают йод, возможно, бром, позволяющие светить аж в 2,5 раза сильнее все тех же аргоновых. Данный тип лампочек является долговечным, но требует хорошего накала нити для работы цикла галогенов)
Ксенон-галогенные (такие лампы наполняют смесью ксенона с йодом или бромом, считающимся лучшим газом для лампочек, потому что светит такой источник в 3 раза ярче стандартной аргоновой лампы)
Ксенон-галогеновые с ИК отражателем (огромная доля свечения лампочек накаливания находится в ИК секторе. Отражая его обратно, можно существенно увеличить КПД лампы)
Лампы с проводником накаливания с преобразователем ИК излучения (на стекло колбы наносится спецлюминофор, излучающий при разогреве видный свет)

Плюсы и минусы ламп накаливания

Как и у прочих электроприборов, у лампочек существует масса плюсов с минусами. Именно поэтому часть людей пользуются данными источниками света, а другая часть сделала выбор в пользу более современных осветительных приборов.

Плюсы:

Хорошая цветопередача;
Масштабное налаженное производство;
Низкая стоимость изделия;
Небольшие размеры;
Простота исполнения без лишних узлов;
Стойкость к радиации;
Имеет только активное сопротивление;
Мгновенный пуск и перезапуск;
Стойкость к перепадам напряжения и сбоям в сети;
В составе нет химически вредных веществ;
Работа как от переменного, так и от постоянного тока;
Отсутствие полярности входов;
Возможно производство под любое напряжение;
Не мерцает от переменного тока;
Не гудит от переменного тока;
Полный световой спектр;
Привычный и удобный цвет свечения;
Стойкость к импульсам электромагнитного поля;
Возможно подключение регулировки яркости;
Свечение при заниженных и завышенных температурах, стойкость к образованию конденсата.

Минусы:

  • Заниженный световой поток;
    Короткая длительность работы;
    Чувствительность к дрожанию и ударам;
    Большой скачок тока при пуске (на порядок выше номинального);
    При разрыве проводника накала возможно разрушение колбы;
    Срок работы и поток света зависит от напряжения;
    Пожароопасность (полчаса свечения лампы накаливания разогревает ее стекло в зависимости от величины мощности: 25вт до 100 градусов по Цельсию, 40вт до 145 градусов, 100вт до 290 градусов, 200вт до 330 градусов. При контакте с тканью нагрев становится более интенсивным. 60- ваттная лампочка может, например, поджечь солому через час работы.);
    Необходимость термостойких патронов и крепежей лампы;
    Маленький КПД (соотношение силы видимого излучения к объему потребляемой электроэнергии);
    Несомненно, главным плюсом лампы накаливания становится ее низкая стоимость. С распространением люминесцентных и, тем более, светодиодных лампочек ее популярность существенно снизилась.

А знаете ли Вы как создаются лампы накаливания? Нет? Тогда вот вам ознакомительное видео от Discovery

И помните лампочка, засунутая в рот, назад не вылезет, поэтому не стоит этого делать. 🙂