Урок по математике "Уравнения" (5 класс). Линейные уравнения


Урок № 33

Тема: Уравнения

Цели урока:

    Обобщить и систематизировать знания учащихся по изучаемой теме, продолжить работу над формированием умения решать уравнения и задачи способом составления уравнений.

    Совершенствовать вычислительные навыки учащихся

    Воспитывать ответственное отношение к учёбе.

Критерии успеха

Я знаю …

Я понимаю …

Я умею ….

Ход урока

Вводно – мотивационный момент

Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!

Сегодня мы продолжаем учиться решать уравнения и задачи способом составления уравнения.

Актуализация знаний

Чтобы выполнить задания, повторим основные понятия, необходимые для решения уравнений и задач, которые решаются способом составления уравнений.

( )

    Какое равенство называется уравнением?

    Какое число называется корнем уравнения?

    Что значит решить уравнение?

    Как проверить верно ли решено уравнение?

Проверка выполнения домашнего задания (Слайд № 2)

(проверка выполнения домашнего задания проводится с помощью самопроверки)

Решение учащимися с проговариванием

(х – 87) – 27 = 36

87 – (41 + у) = 22

х – 87 = 36 + 27

41 + у = 87 - 22

х – 87 = 63

41 + у = 65

х = 63 + 87

у = 65 - 41

х = 150

у = 24

Проверка

Проверка

(150 – 87) - = 36

87 – (41 + 24) = 22

63 – 27 = 36

87 – 65 = 22

36 = 36 (верно)

22 = 22 (верно)

Устная работа

1.Назовите номера уравнений (уравнения записаны на доске), в которых надо найти слагаемое.
В каких уравнениях неизвестно уменьшаемое?
В каких уравнениях надо найти вычитаемое?
В каких уравнениях неизвестно слагаемое?
Найти корни уравнений.

    х + 21 = 40; 2) а – 21 = 40; 3) 50 = а + 31; 4) с – 23 = 61; 5) 42 = 70 – у;

6) 38 - х = 38; 7) 25 – а = 25; 8) х + 32 = 32; 9) у – 0 = 27; 10) 60 – с = 35

    (Слайд № 3)

Работа в группах
Найти неизвестное число:

1) К неизвестному прибавили 71, получили 100.
(х + 71 = 100)
х = 100 – 71
х = 29
2) Произведение двух чисел 72, один множитель равен 12, найти второй множитель.
12*Х = 72
Х = 72: 12
Х = 6
3) При делении некоторого числа на 9 в частном получили 11. Найдите это число.
х: 9 = 31
х = 31* 9
х = 279

Работа над уравнениями (Слайд №5)

Учащимся предлагается составить по условиям три уравнения и решить эти уравнения следующем порядке:
1) Разность суммы чисел «х» и 40 больше числа 31 на 50.
(Уравнение решается с комментированием)
2) Число 70 больше суммы числа 25 и « у » на 38.
(Решение уравнения учащиеся выполняют самостоятельно, а один из учеников записывает решение на обратной стороне доски)
3) Разность числа 120 и числа «а» меньше числа 65 на 53.
(Решение уравнения полностью записывается на доске, после чего весь класс обсуждает решение уравнения)

Работа над задачами (слайд № 6)

Задача № 1
В коробке было несколько яблок. После того как в неё положили ещё 32 яблока, их стало 81. Сколько яблок в коробке было первоначально?

О чём говорится в задаче? Какие действия выполнили с яблоками? Что нужно узнать в задаче? Что следует обозначить буквой?
Пусть в корзине было х яблок. После того, как в неё положили ещё 32 яблока их стало (х + 32) яблока, а по условию задачи яблок в корзине стало 81.
Значит, можем составить уравнение:
х + 32 = 81,
х = 81 – 32,
х = 49

Первоначально в корзине было 49 яблок.
Ответ: 49 яблок.

Задача № 2
В ателье было 70 (м) ткани. Из части ткани сшили платья и ещё 18 (м) израсходовали на брюки, после чего осталось 23 (м). Сколько метров ткани пошло на платья?

О чём говорится в задаче? Какие действия выполнили с тканью? Что нужно узнать в задаче? Что следует обозначить буквой?
Пусть на платья израсходовано х (м) ткани. Тогда на пошив платьев и брюк израсходовано (х + 18) метров ткани. По условию задачи известно, что осталось 23 м.
Значит можем составить уравнение:
70 – (х + 18) = 23,
х + 18 = 70 – 23,
х + 18 = 47,
х = 47 – 18,
х = 29.

На платья пошло 29 метров ткани.
Ответ: 29 метров.

Самостоятельная работа (Слайд № 7)

Самостоятельная работа учащимся предлагается в двух вариантах.

1 вариант

2 вариант

Решите уравнения:

Решите уравнения:

1) 320 – х = 176

1) 450 – у = 246

2) у + 294 = 501

2) х + 386 = 602

Макарова Т.П., ГБОУ СОШ №618 Тренинг «Уравнения» 5 класс

Тренинг для 5 класса по теме «Уравнения» в 2 – х вариантах

Макарова Татьяна Павловна,

Учитель ГБОУ СОШ №618 г. Москвы

Контингент: 5 класс

Тренинг направлен на проверку знаний и умений учеников по теме «Уравнения». Тренинг предназначен для учащихся 5 класса к учебнику Н.Я.Виленкин, В.И.Жохова и др. Учебник для 5 класса. – М.: Мнемозина, 2013. – 288с. Тест содержит два параллельных варианта равной трудности по девять заданий в каждом (4 заданий с выбором ответа, 3 задания с кратким ответом, 2 задания с развернутым решением).

Данный тренинг полностью соответствует федеральному государственному образовательному стандарту (второго поколения), может быть использован при проведении классно-урочного контроля, а также может быть использован учащимися 5 класса для самостоятельной работы по теме.

На выполнение теста выделяется от 15 до 25 минут времени урока. Ключи прилагаются.

Тренинг для 5 класса по теме «Уравнения». Вариант 1.

п/п

Задание

Ответ

Решите уравнение

    574

    1124

    1114

    1024

Найдите корень уравнения

(156-x )+43=170.

1)Корнем уравнения называют значение буквы.

2)Корень уравнения (23 – х ) – 21 = 2 не является натуральным числом.

3)Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

4) Уравнение х – х = 0 имеет ровно один корень.

Петя задумал число. Если к этому числу прибавить 43, а к полученной сумме прибавить 77, то получится 258. Какое число задумал Петя?

1) (х + 43) – 77 = 258

2) (х + 43) + 77 = 258

3) (х – 43) + 77 = 258

4) (х – 43) – 77 = 258

Решите уравнение: (5·с – 8) : 2 = 121: 11.

Решите уравнение: 821 – (m + 268) = 349.

Найдите значение числа а , если 8а + 9х = 60 и х =4.

Решите задачу с помощью уравнения. В библиотеке было 125 книг по математике. После того как учащиеся взяли несколько книг, а потом 3 книги вернули, их стало 116. Сколько всего книг брали учащиеся?

Решите уравнение:

456 + (х – 367) – 225 =898

Тренинг для 5 класса по теме «Уравнения». Вариант 2.

п/п

Задание

Ответ

Часть 1. Задание с выбором ответа

Решите уравнение

    525

    1081

    535

    1071

Найдите корень уравнения

942 – (y + 142) = 419.

    391

    481

    1219

    381

Укажите номера верных утверждений:

1) Уравнение – это равенство, содержащее букву, значение которой надо найти.

2) Любое натуральное число является корнем уравнения

3) Корнем уравнения называют значение буквы, при котором из уравнения получается верное числовое выражение.

4) Чтобы найти неизвестное делимое, надо к частному прибавить делитель.

Даша задумала число. Если к этому числу прибавить 43, а от полученной суммы отнять 77, то получится 258. Какое число задумала Даша?

1) (х + 43) – 77 = 258

2) (х + 43) + 77 = 258

3) (х – 43) + 77 = 258

4) (х – 43) – 77 = 258

Часть 2. Задание с кратким ответом

Решите уравнение: 63: (2·х – 1) = 21: 3.

Решите уравнение: 748 – (b +248) = 300.

Найдите значение числа а , если 7а – 3х = 41 и х =5.

Часть 3. Задания с развернутым решением

Решите задачу с помощью уравнения. На складе было 197 станков. После того, как часть продали, а еще 86 привезли, на складе осталось еще 115 станков. Сколько всего станков продали?

Уравнением называется равенство, в котором имеется неизвестный член - x. Его значение и надо найти.

Неизвестная величина называется корнем уравнения. Решить уравнение означает найти его корень, а для этого нужно знать свойства уравнений. Уравнения за 5 класс несложные, но если вы научитесь их правильно решать, у вас не будет проблем с ними и в дальнейшем.

Главное свойство уравнений

При изменении обеих частей уравнения на одинаковую величину оно продолжает оставаться тем же уравнением с тем же корнем. Давайте решим несколько примеров, чтобы лучше понять это правило.

Как решать уравнения: прибавление или вычитание

Предположим, у нас есть уравнение вида:

  • a + x = b - здесь a и b - числа, а x - неизвестный член уравнения.

Если мы к обеим частям уравнения прибавим (или вычтем из них) величину с, оно не изменится:

  • a + x + с = b + с
  • a + x - с = b - с.

Пример 1

Воспользуемся этим свойством для решения уравнения:

  • 37+х=51

Вычтем из обеих частей число 37:

  • 37+х-37=51-37

получаем:

  • х=51-37.

Корень уравнения х=14.

Если мы внимательно посмотрим на последнее уравнение, то увидим, что оно такое же, как первое. Мы просто перенесли слагаемое 37 из одной части уравнения в другую, заменив плюс на минус.

Получается, что любое число можно переносить из одной части уравнения в другую с противоположным знаком.

Пример 2

  • 37+х=37+22

Проведём то же действие, перенесём число 37 из левой части уравнения в правую:

  • х=37-37+22

Поскольку 37-37=0, то это мы просто сокращаем и получаем:

  • х =22.

Одинаковые члены уравнения с одним знаком, находящиеся в разных частях уравнения, можно сокращать (вычёркивать).

Умножение и деление уравнений

Обе части равенства можно также умножать или делить на одно и то же число:

Если равенство а = b поделить или умножить на с, оно не изменится:

  • а/с = b/с,
  • ас = bс.

Пример 3

  • 5х = 20

Поделим обе части уравнения на 5:

  • 5х/5 = 20/5.

Поскольку 5/5 = 1, то эти множитель и делитель в левой части уравнения сокращаем и получаем:

  • х = 20/5, х=4

Пример 4

  • 5х = 5а

Если обе части уравнения поделить на 5, получим:

  • 5х/5 = 5а/5.

5 в числителе и знаменателе левой и правой части сокращаются, получается х = а. Значит, одинаковые множители в левой и правой части уравнений сокращаются.

Решим ещё один пример:

  • 13 + 2х = 21

Переносим слагаемое 13 из левой части уравнения в правую с противоположным знаком:

  • 2х = 21 - 13
  • 2х = 8.

Делим обе части уравнения на 2, получаем:

  • х = 4.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!