Давление. Виды давления


Давление - физическая величина, характеризующая интенсивность сил, действующих по нормали к поверхности тела и отнесенных к единице площади этой поверхности.

Различают следующие виды давлений:

  • барометрическое (атмосферное)
  • нормальное
  • абсолютное
  • манометрическое (избыточное)
  • акууметрическое (разряжения)

Для измерения давления применяются различные единицы: Паскаль (Па), бар, техническая атмосфера или просто атмосфера, миллиметр ртутного или водяного столба, которые находятся в следующих соотношениях:

1 Па = 10^-5 бар = 1,02 * 10^-5 кгс/см2 = 7,5024 * 10^-2 мм рт. ст.

Барометрическое давление зависит от массы слоя воздуха. Самое большое барометрическое давление было зарегистрировано на уровне моря и составило 809 мм рт. ст., а самое низкое - 684 мм рт. ст. Барометрическое давление выражается высотой столба ртути в мм, приведенного к 0 °С.

Нормальное давление - это среднее значение давления воздуха за год на уровне моря, которое определяется ртутным барометром при температуре ртути 273 К. Оно равно примерно 101,3 кПа (750 мм рт. ст.). То есть нормальным давлением называется барометрическое давление, равное одной физической атмосфере и является частным случаем барометрического давления.

Абсолютным давлением называется давление газов и жидкостей в закрытых объемах. Оно не зависит от состояния окружающей среды.

Манометрическое давление — это разность между абсолютным давлением и барометрическим давлением, если первое больше второго.

Манометр - прибор с помощью которого измеряют давление в закрытом сосуде, находясь вне этого сосуда, испытывает давление как со стороны окружающей среды, так и со стороны сосуда. Поэтому полное или абсолютное давление газа в сосуде равно сумме манометрического давления и барометрического.

Вакуумметрическим давлением называется разность между барометрическим давлением и абсолютным давлением, если последнее меньше первого.

Различают следующие виды давления: барометрическое, абсолютное, манометрическое и вакуумметрическое.

Барометрическое (или атмосферное) давление p б зависит от места над уровнем моря и от погоды. За нормальное барометрическое давление принимают давление, равное 760 мм рт. ст., что соответствует 101325 С высотой барометрическое давление убывает. В глубоких шахтах барометрическое давление значительно больше, чем на уровне моря.

Давление, вычисляемое по соотношению
, называется абсолютным .

Абсолютное давление в точке равно сумме внешнего поверхностного и весового давления.

Если к свободной поверхности приложено барометрическое давление p б , то есть p б о и основное уравнение гидростатики перепишем так

.

Давление
носит название манометрического или избыточного . Таким образом, манометрическим давлением называется разность между абсолютным давлением p а и барометрическим p б , если p a > р б .

Если в данной точке жидкости абсолютное давление меньше барометрического, то разность между барометрическим и абсолютным давлениями называется вакуумметрическим давлением p вак .

Итак, если p a < р б , то

.

Абсолютное давление отрицательным быть не может, поэтому вакуумметрическое давление не может быть больше барометрического.

6.5. Приборы для измерения давления

Приборами для измерения барометрического давления служат барометры различных конструкций.

Для измерения манометрического давления служит манометр. Манометрическое давление можно измерить высотой столба жидкости. Сосуд наполнен жидкостью с плотностью r . Давление на свободной поверхности p o > р б .

Пусть необходимо измерить давление на уровне 1-1. Если на этом уровне сделать отверстие и присоединить к нему стеклянную трубку П, то жидкость в этой трубе поднимется под действием давления на некоторую высоту h .

Рис. 19

По основному уравнению гидростатики

,

.

Этой высотой h поднятия жидкости в трубке П можно измерять манометрическое давление (рис. 19). Трубка П называется пьезометром.

Hайдем соотношение между 1, 1 м вод. ст . и 1 мм рт. ст .

При высоте водного столба h= 1 м давление

.

При высоте ртутного столба h = 1 мм давление

Для измерения вакуумметрического давления применяется вакуумметр. Допустим, что требуется измерить вакуумметрическое давление воздуха в сосуде S , т.е. величину
, где p a - абсолютное давление в сосуде.

Присоединим к сосуду изогнутую трубку, опущенную в жидкость.

,

.

Вакуумметрическому давлению будет соответствовать высота подъема
жидкости в изогнутой трубке над уровнем в резервуаре.

6.6. Сила давления жидкости на плоскую стенку

Гидростатическое давление представляет собой систему параллельных сил, действующих в одну сторону и перпендикулярных к плоскости стенок (рис. 21).

возьмем начало координат в плоскости приведенного уровня на линии пересечения с плоскостью площадки, приняв линию пересечения за ось oy 1 и направив ось oz 1 вертикально вниз, кроме того в плоскости площадки возьмем вспомогательные оси oy и ox , совместив oy 1 и oy .

,

.

.

Последний интеграл равен площади площадки S , умноженной на координату центра тяжести z 1c

.

Произведение
выражает объем цилиндрического столба с основанием S и высотой z 1c и мы приходим к выводу, что давление тяжелой жидкости на плоскую площадку измеряется весом цилиндрического столба этой жидкости, который был бы расположен над площадкой, если бы она лежала горизонтально на глубине своего центра тяжести.

Сосуды различной формы, но с одинаковой площадью дна, наполненные жидкостью на одну и ту же высоту H, имеют одинаковую силу давления на дно (рис. 22).

Полное (абсолютное) и манометрическое давление.

Если рассматривать гидростатическое давление жидкости на стенку сосуда, в который она налита, то в точке А (рис.4) это давление будет выражаться зависимостью (2.14). С внешней стороны на стенку сосуда действует атмосферное давление p а . Следовательно, стенка сосуда будет испытывать давление, равное разности абсолютного гидростатического и атмосферного давлений. Превышение давления над атмосферным называется манометрическим или положительным избыточным гидростатическим давлением:

Давление же p = p м + p а , т.е. гидравлическое давление с учетом атмосферного, называется абсолютным гидростатическим давлением.

Если сосуд открыт, как на рис.3, то давление на свободную поверхность жидкости равно атмосферному давлению p а , т.е. p 0 = p а . В этом случае манометрическое давление представляет собой весовое давление жидкости, равное

Давление можно измерять также высотой столба, какой – либо жидкости (воды, ртути, спирта и т.д.), что видно из формулы (2.16).

Учитывая формулу (2.16), из уравнений (2.17) и (2.18) получим

. (2.19)

В выражении (2.19) переменными величинами являются лишь h и p м , следовательно, манометрическое давление p м в любой точке жидкости характеризуется только глубиной ее погружения или, иначе, глубина погружения любой точки характеризует манометрическое давление в ней.

Если в точке А к резервуару, наполненному жидкостью, присоединить открытую в атмосферу трубку (см.рис.4), то уровень жидкости в такой трубке установится на отметке, большей или меньшей

отметки уровня жидкости в резервуаре в зависимости от того, будет ли p 0 больше или меньше p а . Такие трубки называют пьезометрами, или, в общем случае, жидкостными манометрами. Высоту h называют пьезометрической, или манометрической высотой. Пьезометрическая высота является мерой гидростатического давления в линейных единицах. Если атмосферное давление p а (техническую атмосферу), равное 1кгс/м 2 =10тс/м 2 =9,81∙10 4 Н/м 2 , выразить пьезометрической высотой h (в метрах водяного столба), то получим

м вод. ст.

Следовательно, одна техническая атмосфера измеряется высотой столба воды 10 м.

Пользуясь пьезометром, можно определить давление в любой точке жидкости путем отсчета высоты столба жидкости.

Если абсолютное гидростатическое давление в какой-либо точке жидкости (рис.5) меньше атмосферного (p

),то манометрическое давление в ней будет отрицательным. Например, если в точке А (рис.5) p А /= 6 м вод.ст., то получаем

м вод. ст. = -0,4ат.

В буквальном выражении можно записать

, где .


Отсюда – вакуумметрическая высота,

где p 0 / +h А =p А / −высота, отвечающая абсолютному гидростатическому давлению в точке А :

м вод. ст.

Знак минус указывает, что давление в рассматриваемом баллоне А меньше атмосферного на 0,4 атм, а жидкость в ней сжата давлением 0,6 атм, следовательно, не испытывает растягивающих напряжений.

Недостаток абсолютного давления до атмосферного называют вакуумом (от латинского vacuum − разрежение). Высоту столба жидкости, измеряющую вакуум, называют вакуумной высотой и обозначают:

. (2.20)

Из выражения (2.20) следует, что вакуум может меняться в пределах от 10 м вод. ст. (1ат) до нуля.

Приборы для измерения вакуума называют вакуумметрами или обратными пьезометрами.

Рассмотрим жидкость в закрытом резервуаре с давлением на свободной поверхности p 0 (рис. 6). Выберем в этом резервуаре две произвольные точки А и В и присоединим к каждой из них по пьезометру. Для сопоставления величин выберем плоскость сравнения (линия 0-0). Обозначим координаты (отметки) точек А и В по отношению к плоскости сравнения 0-0 через z А и z В . Если избыточное гидростатическое давление в этих точках соответственно p А и p В , то пьезометрические высоты в пьезометрах, подключенных к точкам А и В соответственно будут равны p А / и p В / .

Суммы высот Z А +p А / или Z В =p В / называются гидростатическим напором в данной точке жидкости относительно выбранной плоскости сравнения 0–0. Согласно уравнению (2.21), эти суммы равны между собой. Следовательно, для данного объема жидкости гидростатический напор относительно выбранной плоскости сравнения есть величина постоянная, т.е.

Если же к точкам А и В подсоединить запаянные сверху трубки, из которых откачан весь воздух, то жидкость в этих трубках поднимается выше, чем в пьезометрах на высоту p а / , отвечающую атмосферному давлению.

Высота подъема уровня жидкости в запаянной трубке будет выражать абсолютное гидростатическое давление в точке, к которой трубка присоединена.

Ни одно современное здание не обходится без отопительной системы. А для ее стабильной и безопасной эксплуатации требуется точный контроль давления теплоносителя. Если давление в пределах гидравлического графика стабильное, то отопительная система работает нормально. Однако при ее повышении появляется риск разрыва трубопровода.

Понижение давления также может привести к таким негативным последствиям, как, например, образование кавитации, то есть в трубопроводе образуются пузырьки воздуха, которые, в свою очередь, могут вызвать коррозию. Поэтому поддерживать нормальное давление крайне необходимо, и благодаря манометру это становиться возможным. Помимо отопительных систем такие приборы применяются в самых различных областях.

Описание и назначение манометра

Манометр представляет собой прибор, измеряющий уровень давления. Существуют такие виды манометров, которые применяются в самых разных отраслях, и, разумеется, для каждой из них предназначен свой манометр. Для примера можно взять барометр - прибор, предназначенный для измерения давления атмосферы. Они широко применяются в машиностроении, в сельском хозяйстве, в строительстве, в промышленности и в других сферах.

Эти приборы измеряют давление, и это понятие растяжимое, по крайней мере, и у этой величины также есть свои разновидности. Чтобы ответить на вопрос о том, какое давление показывает манометр, стоит рассмотреть этот показатель в целом. Это величина, определяющая отношение силы, действующей на единицу площади поверхности, перпендикулярно этой поверхности. Практически любой технологический процесс сопровождается этой величиной.

Виды давления:

Для измерения каждого из перечисленных выше видов показателей существуют определенные типы манометров.

Типы манометров различаются по двум признакам: по виду измеряемого ими показателя и по принципу действия.

По первому признаку они подразделяются на:

Они работают по принципу уравновешивания разницы давлений определенной силой. Поэтому устройство манометров разное, в зависимости от того, как именно происходит это уравновешивание.

По принципу действия они делятся на:

По назначению существуют такие виды манометров, как:

Устройство и принцип действия

Устройство манометра может иметь различную конструкцию в зависимости от вида и предназначения. Так, например, устройство, измеряющее напор воды, имеет довольно простую и понятную конструкцию. Она состоит из корпуса и шкалы с циферблатом, которая отображает значение. В корпусе имеется встроенная пружина трубчатая либо мембрана с держателем, трипко-секторным механизмом и упругий элемент. Прибор функционирует по принципу уравнивания давления за счет силы изменения формы (деформации) мембраны либо пружины. А деформация, в свою очередь, приводит в движение чувствительный упругий элемент, действие которого отображается на шкале с помощью стрелки.

Жидкостные манометры состоят из длинной трубки, которую наполняют жидкостью. В трубке с жидкостью находится подвижная пробка, на которую влияет рабочая среда, измерять силу напора следует в зависимости от перемещения уровня жидкости. Манометры могут предназначаться для измерения разницы, такие устройства состоят из двух трубок.

Поршневые - состоят из цилиндра и поршня, расположенного внутри. Рабочая среда, в которой измеряется давление воздействует на поршень и уравновешивается грузом некоторой величины. Когда показатель изменяется, поршень перемешается и приводит в действие стрелку, которая показывает значение давления.

Термопроводные состоят из нити накаливания, которые нагреваются, когда через них пропускается электрический разряд. Принцип работы таких приборов основан на снижении теплопроводности газа с давлением.

Манометр Пирани назван так в честь Марчелло Пирани, который впервые сконструировал устройство. В отличие от термопроводных, состоит из металлической проводки, которая также нагревается во время прохождения через нее тока и охлаждается под воздействием рабочей среды, а именно газа. При уменьшении давления газа снижается и эффект охлаждения, а температура проводки возрастает. Величина измеряется посредством измерения напряжения в проводе во время прохождения через нее тока.

Ионизационные являются самыми чувствительными устройствами, которые используются для вычисления малых давлений. Как следует из названия устройства, его принцип работы основывается на измерении ионов, которые образуются под воздействием электронов на газ. Количество ионов зависит от плотности газа. Однако ионы имеют очень нестабильную природу, которая напрямую зависит от рабочей среды газа или пара. Поэтому для уточнения применяются другой вид манометра Мак Леода. Уточнение происходит за счет сравнения показателей ионизационного манометра, с показаниями прибора Мак Леода.

Существует два вида ионизационных устройств: с горячим и холодным катодом.

Первый вид был сконструирован Баярдом Аллертом, состоит из электродов, которые работают в режиме триода, а в качестве катода выступает нить накала. Самый распространённый вид горячего катода - ионный манометр, в конструкции которого помимо коллектора, нити и сетки встроен небольшой ионный коллектор. Такие приборы очень уязвимы, они могут легко потерять калибровку, в зависимости от условий работы. Поэтому показания этих приборов всегда логарифмичны.

Холодный катод также имеет свои разновидности: интегрированный магнетрон и манометр Пеннинга. Их главное отличие заключается в положении анода и катода. В конструкции этих приборов нет нити накалывания, поэтому им для работы им требуется напряжение до 0,4 кВт. Использовать такие устройства не эффективно при низком уровне давления. Поскольку они могут просто не заработать и не включиться. Принцип их работы основан на выработке тока, что невозможно при полном отсутствии газа, особенно для манометра Пеннинга. Так как устройство работает только в определенном магнитном поле. Оно необходимо для создания нужной траектории движения ионов.

Маркировка по цвету

Манометры, измеряющие давление газа, имеют цветные корпуса, их специально окрашивают в различные цвета. Существует несколько основных цветов, которые используются для окрашивания корпуса. Как, например, манометры, которые измеряют давление кислорода, имеют корпус голубого цвета с условным обозначением О2, аммиачные манометры имеют корпус, окрашенный в желтый цвет, ацетиленовые - белого цвета, водородные - темно-зеленого, хлорные - серого. Приборы, измеряющие давление горючих газов, окрашиваются в красный цвет, а негорючих -черный.

Преимущества использования

В первую очередь, стоит отметить универсальность манометра, который заключается в возможности контролировать давление и поддерживать ее на определенном уровне. Во-вторых, устройство позволяет получить точные показатели нормы, так и отклонение от них. В-третьих, доступность практически любо человек может себе позволить приобрести данный прибор. В-четвертых, устройство способно работать стабильно и бесперебойно на протяжении длительного времени, и не требует специальных условий или навыков.

Использование таких устройств в таких областях, как медицина, химическая промышленность, машино- и автомобилестроение, морской транспорт и других требующих точного контроля давления, значительно облегчает работу.

Класс точности прибора

Манометров очень много, и каждому виду присваивается определенный класс точности согласно предписаниям ГОСТ, под которым понимается допустимая погрешность, выражающаяся в процентном отношении к диапазону измерений.

Существует 6 классов точности: 0,4; 0,6; 1; 1,5; 2,5; 4. У каждого типа манометра они также различаются. Приведенный выше список относится к рабочим манометрам. Для пружинных устройств, к примеру, соответствуют следующие показатели 0,16; 0,25 и 0,4. Для поршневых - 0,05 и 0,2 и так далее.

Класс точности имеет обратно пропорциональную зависимость от диаметра шкалы прибора и от типа прибора. То есть, если диаметр шкалы больше, то точность и погрешность манометра уменьшается. Класс точности условно принято обозначать следующими латинскими буквами KL также можно встретить и CL, которая указывается на шкале прибора.

Значение погрешности можно вычислить. Для этого используется два показателя: класс точности или KL и диапазон измерений. Если класс точности (KL) равен 4, то диапазон измерений составит 2,5 МПа (Мегапаскаль), а погрешность будет равна 0,1 МПа. Вычисляется по формуле произведение класса точности и диапазона измерений, деленное на 100 . Поскольку погрешность выражается в процентах, результат нужно переводить в проценты путем деления на 100.

Помимо основного вида, существует и дополнительная погрешность. Если для вычисления первого вида используются идеальные условия или натуральные величины, влияющие на особенности конструкции прибора, то второй вид напрямую зависит от условий. Например, от температуры и вибрации или других условий.

> Манометрическое давление и барометр

Читайте определение манометрического давления. Узнайте как использовать барометр и определить манометрическое давление, торр, изобретение датчика давления.

Барометр – прибор для определения атмосферного и манометрического давлений при помощи гидростатических жидкостей.

Задача обучения

  • Сравнить дизайн и работу барометров на основе анероидов и гидростатики.

Основные пункты

  • Манометрическое давление – давление системы выше атмосферного, которое для большинства расчетов должно трансформироваться в абсолютное.
  • Барометр – устройство, применяющее гидростатические жидкости для замера атмосферного давления. Его можно использовать для косвенного измерения манометрического давления в системах.
  • Барометр гидростатической колонны использует жидкость (вода или ртуть) для функциональности, а барометр-анероид – эвакуированную гибкую металлическую ячейку.

Термины

  • Анероидный барометр – устройство для измерения давления. Часто настроенный на использование в качестве высотомера.
  • Торр – единица давления, соответствующая одному миллиметру ртути (760 торр = 101 325 Па).

Манометрическое давление

Начнем с определения манометрического давления. Манометрическое – давление системы выше атмосферного. Последнее обычно выступает постоянным, с небольшими колебаниями вблизи уровня моря, и достигает 101325 Па. Современные устройства для измерения давления иногда добавляют механизмы для учета изменений атмосферного давления из-за перемен высоты. Манометрическое давление намного удобнее абсолютного в практических измерениях и широко используется в качестве установленной меры давления. Но нужно понять, есть ли необходимость в использовании абсолютного давления для расчетов.

Давление удалось измерить в середине 1600-х годов с изобретением традиционного датчика давления - барометра. Это устройство изначально настраивалось исключительно на измерение атмосферного давления.

Гидростатические барометры

Первые барометры замеряли атмосферное давление на основе гидростатических жидкостей. Это столбчатые конструкции (чаще стеклянные), заполненные статической жидкостью с фиксированной плотностью. Столбчатая секция герметизирована, удерживает вакуум и частично заполняется жидкостью, а базовая открыта для атмосферы и дает возможность контактировать с внешней средой. По мере перемены атмосферного давления вносятся поправки и в показатель. Это приводит к перемене высоты жидкости в столбчатой ​конструкции (растет, когда атмосфера сильнее давит на жидкость в основании резервуара, и падает, когда атмосфера оказывает более низкое давление).

Затем высота жидкости в стеклянном столбе показывает количество атмосферного давления. Работа гидростатического барометра основывается на определении высоты жидкости в колонке. Поэтому в качестве единицы давления используют торр, а в виде жидкости – воду или ртуть. С точки зрения безопасности лучше всего ограничиваться водой, но ртуть гарантирует точность (плотность ртути намного выше, чем у воды).

Теоретически, гидростатический барометр можно отправить в замкнутую систему для измерения абсолютного и манометрического давлений системы через вычитание атмосферного.

Анероидный барометр

Представлен небольшим металлическим корпусом (анероидная ячейка), частично изолированным. Небольшие перемены внешнего давления воздуха заставляют его расширяться или сжиматься. Это усиливается специальным механизмом, чтобы зафиксировать показатели.

Такие устройства отличаются большей практичностью. Большинство современных механизмов изначально настроены на замер манометрического давления. Анероидный – главный механизм, от которого отталкиваются при создании устройств измерения давления.

Определение давления при помощи высоты флюиды в барометре с гидростатической колонной

Плотность жидкости равна p, g – ускорение силы тяжести, h – высота жидкости в столбце барометра