Что такое вентильный фотоэффект. Введение


ФОТОЭФФЕКТ ВЕНТИЛЬНЫЙ

фотоэффект в запирающем слое, - возникновение под действием электромагнитного излучения электродвижущей силы (фотоэдс) в системе, состоящей из двух контактирующих разных ПП или из ПП и металла. Наибольший практич. интерес представляет Ф. в. в р - я-переходе и гетеропереходе. Ф. в. используют в фотоэлектрич. генераторах, в ПП фотодиодах, фототранзисторах и т. д.


. 2004 .

Смотреть что такое "ФОТОЭФФЕКТ ВЕНТИЛЬНЫЙ" в других словарях:

    Квантовая механика … Википедия

    Перераспределение электронов по энергетич. состояниям в твёрдых и жидких ПП и диэлектриках, происходящее под действием электромагн. излучения. Ф. в. обнаруживается, как правило, по изменению концентрации носителей тока в среде, т. е. по появлению … Большой энциклопедический политехнический словарь

    вентильный фотоэффект - Внутренний фотоэффект, при котором возникает э.д.с. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики физическая оптика Обобщающие термины превращение… … Справочник технического переводчика

    ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

    Явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

    ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

    А; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

    вентильный фотоэффект

    фотоэффект запирающего слоя - užtvarinis fotoefektas statusas T sritis fizika atitikmenys: angl. barrier layer photoeffect; barrier layer photoelectric effect; photovoltaic effect vok. Sperrschichtphotoeffekt, m rus. вентильный фотоэффект, m; фотовольтаический эффект, m;… … Fizikos terminų žodynas

    Явление, связанное с освобождением электронов тв. тела (или жидкости) под действием эл. магн. излучения. Различают: внеш. Ф. испускание электронов под действием света (фотоэлектронная эмиссия), у излучения и др.; внутр. Ф. увеличение… … Естествознание. Энциклопедический словарь

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

Рис. 2.1 Рис. 2.2

Два электрода (катод К из исследуемого материала и анод А , в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I , образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U , при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Вентильным фотоэффектом называется возникновение электродвижущей силы при поглощении квантов излучения оптического диапазона в системе, содержащей контакт двух примесных полупроводников с различным типом проводимости или в системе полупроводник - металл.

На рис. 3 показана энергетическая диаграмма p-n перехода без освещения (E c , E v и E F - энергии дна зоны проводимости, потолка валентной зоны и уровня Ферми, соответственно, E g -ширина запрещенной зоны).

Рис.3. Энергетическая диаграмма p-n перехода без освещения.

Рис.4. Энергетическая диаграмма p-n перехода при освещении.

При освещении такой системы фотонами с энергией hn > E g , поглощенный свет переводит электроны из валентной зоны в зону проводимости. При этом в валентной зоне образуются дырки, т.е. происходит генерация электронно - дырочных пар (рис.4). Поведение неравновесных носителей зависит от того, в какой области системы поглощается излучение. Для каждой области важным является поведение неосновных носителей, поскольку именно их плотность может изменяться в широких пределах при освещении. Плотность же основных носителей с обеих сторон границы раздела полупроводников практически остается неизменной. Если излучение поглощается в p-области, то электроны, находящиеся от p-n перехода на расстоянии, меньшем диффузионной длины пробега, смогут достигнуть его и под действием контактного электрического поля перейдут в n-область.

Аналогично, если излучение поглощается в n-области, то через p-n переход в p-область выбрасываются только дырки.

Если же пары генерируются в области объемного заряда (р-n перехода), то поле "разводит" носители зарядов таким образом, что они оказываются в той области, где являются основными.

Итак, образованные светом пары, будут разделяться. При этом электроны концентрируются в n-полупроводнике, а дырки - в p-полупроводнике, т.е. p-n переход играет роль "стока" неосновных носителей заряда.

Это накопление зарядов не может продолжаться бесконечно: параллельно с возрастанием концентрации дырок в p-полупроводнике и электронов в n-полупроводнике, возрастает созданное ими электрическое поле, которое препятствует дальнейшему переходу неосновных носителей через запирающий слой.

По мере возрастания этого поля увеличивается и обратный поток неосновных носителей. В конце концов наступит динамическое равновесие, при котором число неосновных носителей, перемещающихся за единицу времени через запирающий слой, сравняется с числом тех же носителей, перемещающихся за тот же промежуток времени в обратном направлении.

  • Лекция № 10 Фотоэффект. Эффект Комптона. Линейчатые спектры атомов. Постулаты Бора.
  • По охвату единиц совокупности различают сплошное и несплошное наблюдение.
  • По порядку составления различают первичные и сводные документы.
  • Внутренний фотоэффект - это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости - повышению электропроводности полупроводника или диэлектрика при его освещении.

    Вентильный фотоэффект (разновидность внутреннего фотоэффекта)

    1. возникновение ЭДС (фото-ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект используется в солнечных батареях для прямого преобразования солнечной энергии в электрическую.

    Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитного излучения.

    Схема для исследования внешнего фотоэф­фекта . Два электрода (катод К из исследуемого металла и анод А ) в вакуумной трубке подключены к батарее так, что можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникаю­щий при освещении катода монохроматическим светом (через кварцевое окошко) измеряется включенным в цепь миллиамперметром. Зависимость фототока I , образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между катодом и анодом называется вольт-амперной харак­теристикой фотоэффекта.

    По мере увеличения U фототок посте­пенно возрастает пока не выходит на насыщение. Максимальное значение тока I нас - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода: I нас = en , где n - число электронов, испус­каемых катодом в 1с. При U = О фототок не

    исчезает, поскольку фотоэлектроны при вылете из катода обладают некоторой начальной скоростью. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U 0 . При U = U 0 ни один из электронов, даже обладающий при вылете максимальной начальной скоростью, не может преодолеть задерживающего поля и достигнуть анода:

    т.е., измерив задерживающее напряжение U 0 , можно определить максимальное значение скорости υ max и кинетической энергии K m ах фотоэлектронов.



    45. Законы фотоэффекта.

    (1) Закон Столетова : при фиксированной частоте падающего света число фотоэлектронов, испускаемых фотокатодом в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Е е катода).

    (2) Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν

    (3) Для каждого вещества существует красная граница фотоэффекта - минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

    Для объяснения механизма фотоэффекта Эйнштейн предположил, что свет частотой ν не только испускается отдельными квантами (согласно гипотезе Планка), но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых ε 0 =h ν.

    Кванты электромагнитного излучения, движущиеся со скоростью с распространения света в вакууме, называются фотонами.

    Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла (см. стр.3-31) и на сообщение вылетевшему фотоэлектрону кинетической энергии. Уравнение Эйнштейна для внешнего фотоэффекта:



    Это уравнение объясняет зависимость кинетической энергии фотоэлектронов от частоты падающего света (2й закон). Предельная частота

    (или ), при которой кинетическая

    энергия фотоэлектронов становится равной нулю, и есть красная граница фотоэффекта (3-й закон). Другая форма записи уравнения Эйнштейна

    На рисунке изображена зависимость максимальной кинетической энергии фотоэлектронов от частоты облучающего света для алюминия, цинка и никеля. Все прямые параллельны друг другу, причем производная d(eU 0)/dv не зависит от материала катода и численно равна постоянной Планка h. Отрезки, отсекаемые на оси ординат, численно равны работе А выхода электронов из соответствующих металлов.

    На явлении фотоэффекта основано действие фотоэлементов и фотосопротивлений (фоторезисторов) в фотоэкспонометрах, люксметрах и устройствах управления и автоматизации различных процессов, пультах дистанционного управления, а также полупроводниковых фотоэлектронных умножителей и солнечных батарей.

    Существование фотонов было продемонстри­ровано в опыте Боте. Тонкая металлическая фольга Ф, расположенная между двумя счетчиками Сч, под действием жесткого облучения испускала рентгеновские лучи. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, то оба счетчика должны были бы срабатывать одновре­менно, и на движущейся ленте Л появлялись бы синхронные отметки маркерами М. В действительно­ сти же расположение отметок было беспорядочным. Следовательно, в отдельных актах испускания рождаются световые частицы (фотоны), летящие то в одном, то в другом направлении.

    46. Масса и импульс фотона. Единство корпускулярных и волновых свойств света.

    Используя соотношения , получаем выражения для энергии, массы и импульса фотона

    Эти соотношения связывают квантовые (корпускулярные) характеристики фотона - массу, импульс и энергию - с волновой характеристикой света - его частотой.

    Свет обладает одновременно волновыми свойствами, которые проявля­ются в закономерностях его распространения, интерференции, дифракции, поляризации, и корпускулярными , которые проявляются в процессах взаимодействия света с веществом (испускания, поглощения, рассеяния).

    47. Давление света.

    Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление.

    Пусть поток монохроматического излучения частоты падает перпенди­кулярно поверхности. Если за 1с на 1м 2 поверхности тела падает N фотонов, то при коэффициенте отражения р света от поверхности тела отразится ρN фотонов, а (1-ρ)N фотонов - поглотится. Каждый поглощенный фотон передает поверхности импульс p γ , а каждый отраженный фотон -2p γ

    Давление света на поверхность равно импульсу, который передают

    поверхности за 1с N фотонов

    Энергетическая освещенность поверхности (энергия всех фотонов, падающих на единицу поверхности в единицу времени). Объемная

    плотность энергии излучения: . Отсюда

    Волновая теория света на основании уравнений Максвелла приходит к такому же выражению. Давление света в волновой теории объясняется тем, что под действием электрического поля электромагнитной волны электроны в металле будут двигаться в направлении (обозначенном на рисунке) противоположном Магнитное поле электромагнитной волны действует на движущиеся электроны с силой Лоренца в направлении (по правилу левой руки) перпендикулярном поверхности металла. Таким образом, электромагнитная волна оказывает на поверхность металла давление.

    48. Эффект Комптона.

    Корпускулярные свойства света отчетливо проявляются в эффекте Комптона - упругом рассеянии коротковолнового электромагнитного излучения (рентгеновского и -излучений) на свободных (или слабосвязанных) электронах вещества,сопровождающееся увеличением длины волны. Это увеличение не зависит от длины волны λ падающего

    Демонстрирует простой опыт. Если отрицательно заряженную цинковую пластинку, соединённую с электроскопом (прибором, показывающим наличие электрического заряда), осветить светом ультрафиолетовой лампы, то очень быстро стрелка электроскопа перейдёт в нулевое состояние. Это говорит о том, что заряд исчез с поверхности пластины. Если такой же опыт проделать с положительно заряженной пластиной, стрелка электроскопа не отклонится вовсе. Этот опыт был впервые проведен в 1888 г. русским физиком Александром Григорьевичем Столетовым .

    Александр Григорьевич Столетов

    Что же происходит с веществом, когда на него падает свет?

    Мы знаем, что свет - это электромагнитное излучение, поток квантовых частиц - фотонов . Когда электромагнитное излучение падает на металл, часть его отражается от поверхности, а часть поглощается поверхностным слоем. При поглощении фотон отдаёт электрону свою энергию. Получив эту энергию, электрон совершает работу и покидает поверхность металла. И пластинка, и электрон имеют отрицательный заряд, поэтому они отталкиваются, и электрон вылетает с поверхности.

    Если же пластинка заряжена положительно, отрицательный электрон, выбитый с поверхности, снова притянется ею и не покинет её поверхность.

    История открытия

    Явление фотоэффекта было открыто в начале XIX века.

    В 1839 г. французский учёный Александр Эдмонд Беккерель наблюдал фотогальванический эффект на границе металлического электрода и жидкости (электролите).

    Александр Эдмонд Беккерель

    В 1873 г. английский инженер-электрик Смит Уиллоуби обнаружил, что если воздействовать на селен электромагнитным излучением, то его электропроводность меняется.

    Проводя опыты по исследованию электромагнитных волн в 1887 г., немецкий физик Генрих Герц заметил, что заряженный конденсатор разряжается гораздо быстрее, если осветить его пластины ультрафиолетовым излучением.

    Генрих Герц

    В 1888 г. германский физик-экспериментатор Вильгельм Гальвакс обнаружил, что при облучении металла коротковолновым ультрафиолетовым излучением металл теряет отрицательный заряд, то есть наблюдается явление фотоэффекта.

    Огромный вклад в изучение фотоэффекта внёс русский физик Александр Григорьевич Столетов, проводивший детальные опыты по изучению фотоэффекта в 1888-1890 гг. Для этого он сконструировал специальный прибор, состоявший из двух параллельных дисков. Один из этих дисков, катод , сделанный из металла, находился внутри стеклянного корпуса. Другой диск, анод , представлял собой металлическую сетку, нанесённую на изготовленный из кварцевого стекла торец корпуса. Кварцевое стекло было выбрано учёным не случайно. Дело в том, что оно пропускает все виды световых волн, включая ультрафиолетовое излучение. Обычное стекло ультрафиолетовое излучение задерживает. Из корпуса откачивался воздух. К каждому из дисков подводилось напряжение: к катоду отрицательное, к аноду положительное.

    Опыт Столетова

    Во время опытов учёный освещал катод через стекло красным, зелёным, синим и ультрафиолетовым светом. Величина тока регистрировалась гальванометром, в котором основным элементом было зеркало. В зависимости от величины фототока, зеркало отклонялось на разный угол. Наибольший эффект оказывали ультрафиолетовые лучи. И чем больше их было в спектре, тем сильнее оказывалось воздействие света.

    Столетов обнаружил, что под действием света освобождаются только отрицательные заряды.

    Катод изготавливали из различных металлов. Наиболее чувствительными к свету оказались такие металлы, как алюминий, медь, цинк, серебро, никель.

    В 1898 г. было установлено, что освобождаемые при фотоэффекте отрицательные заряды являются электронами.

    А в 1905 г. Альбер Эйнштейн объяснил явление фотоэффекта, как частный случай закона сохранения и превращения энергии.

    Внешний фотоэффект

    Внешний фотоэффект

    Процесс выхода электронов из вещества под действием электромагнитного излучения называют внешним фотоэффектом , или фотоэлектронной эмиссией . Электроны, вылетающие с поверхности, называются фотоэлектронами . Соответственно, электрический ток, который образуется при их упорядоченном движении, называют фототоком .

    Первый закон фотоэффекта

    Сила фототока прямо пропорциональна плотности светового потока . Чем выше интенсивность излучения, тем большее количество электронов будет выбито из катода за 1 с.

    Интенсивность светового потока пропорциональна числу фотонов. С увеличением числа фотонов увеличивается число электронов, покидающих поверхность металла и создающих фототок. Следовательно, увеличивается сила тока.

    Второй закон фотоэффекта

    Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

    Энергия, которой обладает падающий на поверхность фотон, равна:

    Е = h·ν ,где ν - частота падающего фотона; h - постоянная Планка.

    Получив энергию Е , электрон совершает работу выхода φ . Остальная часть энергии - это кинетическая энергия фотоэлектрона.

    Из закона сохранения энергии вытекает равенство:

    h·ν=φ + W e , где W e - максимальная кинетическая энергия электрона в момент вылета из металла.

    h·ν=φ + mv 2 /2

    Третий закон фотоэффекта

    Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν min (или максимальная длина волны λ max ), при которой ещё возможен фотоэффект, и если ν˂ ν min , то фотоэффект уже не происходит.

    Фотоэффект проявляется, начиная с определённой частоты света ν min . При этой частоте, называемой «красной» границей фотоэффекта , начинается испускание электронов.

    h· ν min = φ .

    Если частота фотона ниже ν min , его энергии будет недостаточно, чтобы «выбить» электрон из металла.

    Внутренний фотоэффект

    Если под воздействием излучения электроны теряют связь со своми атомами, но не покидают твёрдые и жидкие полупроводники и диэлектрики, а остаются внутри них как свободные электроны, то такой фотоэффект называется внутренним. В результате происходит перераспределение электронов по энергетическим состояниям. Изменяется концентрация носителей зарядов и возникает фотопроводимость (увеличение проводимости под воздействием света).

    К внутреннему фотоэффекту относят и вентильный фотоэффект , или фотоэффект в запирающем слое . Этот фотоэффект возникает, когда под воздействием света электроны покидают поверхность тела и переходят в другое, контактирующее тело - полупроводник или электролит.

    Применение фотоэффекта

    Все устройства, принцип действия которых основан на фотоэффекте, называются фотоэлементами . Первым в мире фотоэлементом стал прибор Столетова, созданный им для проведения опытов по изучению фотоэффекта.

    Фотоэлементы широко используются в самых различных устройствах в автоматике и телемеханике. Без фотоэлементов невозможно управление станками с числовым программным управлением (ЧПУ), которые могут создавать детали по чертежам без участия человека. С их помощью считывается звук с киноплёнки. Они входят в состав различных контролирующих устройств, помогают остановить и заблокировать устройство в нужный момент. С помощью фотоэлементов уличное освещение включается с наступлением темноты и отключается на рассвете. Они помогают управлять турникетами в метро и маяками на суше, опускают шлагбаум при приближении поезда к переезду. Их используют в телескопах и солнечных батареях.