Усиление и укрепление кирпичных стен. Ремонт кирпичных стен


Своевременное предотвращение деформации несущих элементов способствует увеличению периода эксплуатации здания. Усиление кирпичных стен монтируют с целью повышения прочности сооружения. При правильном подходе можно восстановить стену с потерей прочности до 50%. Важно соблюдать нормы и правила на каждом этапе строительства, поскольку опорные элементы конструкций могут сократить несущую способность, и дом начнет рушиться. Существует несколько методов устранения трещин и проседаний конструктивных элементов.

Причины укрепления

Усиление кирпичной кладки проводят для увеличения прочности сооружения. Такие мероприятия гарантируют сохранение целостности конструкции при возможной перепланировке дома, смещении внутренних перегородок, монтаже дополнительных оконных или дверных проемов. Укрепление кирпичной стены позволяет предотвратить деформацию здания в целом. При первых признаках нарушения целостности сооружения рекомендуется монтировать усиление стен.

Деформация кладки происходит под воздействием таких факторов:

  • Неправильно рассчитанный проект. Нарушение нормативной дистанции между постройками, неравномерное распределение несущей способности элементов, чрезмерные нагрузки на фундамент.
  • Нарушение технологии устройства фундамента. Отсутствие дополнительного укрепления рыхлой почвы, неправильная глубина основания, использование добавок в растворах.
  • Некачественная кладка. Неправильно выбран способ устройства оконных и дверных проемов, облицовка смесями с низким уровнем воздухопроницаемости, применение некачественного раствора, отсутствие распределительных плит при укладке перекрытий.
  • Нарушение правил эксплуатации стен. Отсутствие водосточных труб и отмостки, протекание подземных коммуникационных систем, нарушение шарнирных связей несущих элементов с перекрытиями.

Методы усиления кирпичных стен


При нешироких трещинах можно прибегнуть к методу инъектирования.

Схема усиления стен из кирпича разрабатывается с учетом степени деформации. Разрушение кладки проявляется в виде трещин разной ширины. Дефекты до 4 см промывают и заделывают торкретбетоном. Более широкие разъемы через инъекторы заполняют специальной смесью для возобновления уровня прочности. Перед началом работ ремонтируют цоколь, возобновляют кладку, проделывают проемы. Существует несколько способов укрепления стен, выбор зависит от характера разрушения.

Чтобы восстановить треснувшую несущую стену здания, выполняют укрепление обоймами.

Усиление железобетонной обоймой

Сравнительно недорогой метод возобновления несущей способности элементов сооружения. Выполнение занимает немного времени. Главный недостаток - увеличение нагрузки на основание. Этапы работ с железобетонными обоймами:

  1. Креплениями фиксируют на кладке арматурную сетку. Железобетонные оболочки делают из поперечных арматурных прутьев А240/AI класса и продольной арматуры А240-А400/AI, AII, AIII классов.
  2. Определяют толщину и материал для бетонирования. Рекомендуется использовать мелкозернистые бетонные составы 10-го класса и выше.
  3. Обойму толщиной менее 4 см заливают пневмобетоном и дают застыть.
  4. Выполняют облицовку штукатуркой.
  5. Для слоя толще 4 см по периметру устанавливают опалубку, в ней оставляют отверстия для инъекционных трубок.
  6. Заливают площадь монолитными бетонными составами.

Для усиления проемов в стенах можно воспользоваться стальной обоймой.

Применение метода позволяет укрепить несущие элементы конструкции. Стальными обоймами и балками из швеллера можно выполнить усиление проемов в кирпичных стенах. При создании нового оконного отверстия с целью повышения прочности кладки применяют металлоконструкции. Для укрепления проема в кирпичной стене монтируют швеллер. Для усиления стены понадобятся арматурные прутья и профильные уголки.

Этапы проведения работ с металлическими креплениями:

  1. По углам заданной площади раствором крепят уголки.
  2. Фиксируют металлические полосы шириной не более 6 см.
  3. Монтируют остальные продольные элементы. Их размер зависит от высоты заданной площади.
  4. На каркас крепят сетку. Применение металлической основы повышает прочность сооружения.
  5. Заливают цементным раствором толщиной 3 см. Такой слой защитит укрепление стальными тяжами от коррозии.

Любое здание, независимо от того, жилое оно или заброшенное, подвергается постепенному разрушению. Деформируются стены, фундамент, сам кирпич. Основанием для подобных проявлений могут стать ошибки строителей при возведении конструкции, неправильная эксплуатация здания, низкие показатели проектировочных работ. Своевременная ликвидация таких последствий вернет зданию прежний облик и продлит срок его использования. Помочь в такой ситуации может усиление кирпичных стен.

Деформация кирпичной стены требует усиления. С помощью усиления кладки можно полностью восстановить несущую способность стены.

А почему нарушается целостность кирпичной кладки? На это может влиять:

  1. Неоднородность состава почвы под зданием.
  2. Повышенная нагрузка на фундамент и несущие элементы.
  3. Неимение между частями конструкции деформационных швов.
  4. Неравномерность нагрузки на грунтовое основание.
  5. Проседание фундамента.

Этапы деформации кирпичной кладки

  1. Напряжение в конструкции, не влекущее за собой нарушений в кладке.
  2. Появление незначительных растрескиваний у некоторых кирпичей, так называемое волосяное растрескивание.
  3. Соединение нескольких расщелин со швами вертикального вида. Это способствуют расслоению кладки.
  4. Постепенное деформирование основания стены.

Уже при первых признаках подобных проявлений важно понять причины и осуществить контроль качественных показателей за выложенным кирпичом. Нужно проследить за привязкой наружных стен, высотой швов, поддержанием горизонтального основания и наполнением этих промежутков составом.

Вернуться к оглавлению

Методика усиления кирпичных поверхностей

Сейчас усиление кирпичной кладки проводится при использовании нижеперечисленных обойм:

Схема усиления кирпичной кладки: 1 – трещина, 2- инъекционные шпуры, 3 – инъекционные патрубки, 4 – цементно-песчаный раствор, 5 – трещина, заполненная цементным раствором.

  • армированных;
  • железобетонных;
  • композиционных;
  • стальных.

Чтобы правильно определиться с укрепляющей методикой, нужно принять во внимание следующие факторы: состояние стены, армирующий коэффициент, марку бетона или штукатурного состава, особенности нагрузки на поверхность. Крепость такой конструкции определяется процентом армирования хомутиками. При наружном осмотре здания можно проконтролировать число расщелин, их глубину и ширины. Применение в реконструкции обойм позволит воссоздать несущие способности здания.

При оценке внешних характеристик несущих компонентов важно представить эту картину в реальности. В начале стены очищаются от грязи, сора и промываются водой. Штукатурка, подверженная деформации, удаляется полностью. Стоит отметить, что недостаточно хорошее качество очистки поверхности приведет к скорой поломке кладки.

Наряду с проведением укрепляющих мероприятий обоймами, необходимо замазать щели цементным составом под давлением. Такие мероприятия позволят усилить несущие способности конструкции. Применяемые составы должны обладать высокими показателями морозостойкости, быть достаточно вязкими, характеризоваться незначительными показателями усадки, крепко сцепляться с кирпичом и сжиматься.

Вернуться к оглавлению

Реставрация кирпичных перегородок

Для починки кирпичной кладки, в особенности для избавления от щелей, на внешней стороне стены устанавливают металлические накладывающиеся элементы. Они помогают укрепить конструкцию и не позволяют ей разрушаться дальше. Вначале щель следует заклеить бумагой, спустя некоторое время провести оценку ее состояния. Ее целостность свидетельствует о завершении деформационного процесса в здании. Значит, настало время проведения ремонтных работ. Разрыв полосы говорит о продолжении таких разрушений.

Металлические накладывающиеся элементы укрепляют конструкцию и не дают ей дальше разрушаться.

Следовательно, необходимо определить причину такого явления и предпринять определенные действия по их устранению. Важно обратить внимание на качество фундамента, возможно, он требует усиления.

В некоторых случаях применяется укрепление кладочных опор методом армирования и качественной перевязки сооружения. Иногда с целью крепкой фиксации простенков используют специальные корсеты, сделанные из армированных бетонных составов путем увеличения их сечения.

  1. Демонтаж кирпичных стен, имеющих незначительные дефекты, осуществляют своими силами. Обычно здесь используются специальные ручные машины, методику взрывания и механический способ очистки.
  2. Применение ручного способа демонтажа перегородок дает право для использования кирки и лома. Движения осуществляются в таком порядке: начинаются сверху, постепенно переходят вниз, соблюдая горизонтальность рядов.
  3. Чтобы разобрать особо крепкое основание стены, берется кувалда, скарпель, клинья.
  4. Размонтировать плоскость, состоящую из бута или бутобетона, можно отбойным молотком, киркой и ломом.

Вернуться к оглавлению

Проведение ремонта и восстановление кирпичной кладки

Вернуться к оглавлению

Воссоздание кирпичного покрытия расшивкой швов

Если произошло нарушение во внешнем слое кирпичной кладки в момент выветривания, наблюдается заметное снижение технических характеристик перекрытия, перегородки теряют свое главное предназначение. Устраняют подобные явления оштукатуриванием швов цементным составом.

Накануне проведения расшивки кирпич расчищается и промывается с использованием воды. После этого швы заполняются раствором и выравниваются специальными инструментами. Если на перемычках имеются отдельные щели, их упрочивают с помощью нагнетания в них текучих составов. В качестве примера можно использовать цемент, полимерцемент.

Перемычки арочного типа ремонтируют так: сначала с них убирается лишняя нагрузка, потом они перекладываются. Рядовые и клинчатые разновидности восстанавливают путем усиления подводок из перекрытий, выполненных из стали или железобетона.

Вернуться к оглавлению

Избавление от трещин в кирпичных перекрытиях

Наличие на перегородках здания небольших щелей позволяет использовать для этих целей бетонную смесь, при этом не следует забывать о предварительной расчистке стены. Если трещины очень глубокие и большого размера, поврежденное место следует переложить заново.

Вернуться к оглавлению

Реставрация участков с сильной степенью изношенности

Если несущие перекрытия изрядно износились, этот участок выкладывается заново. В результате стены полностью восстанавливают прежний облик. Такой способ помогает полностью ликвидировать изъяны поверхности.

Порядок проведения работ:

  1. Сначала создается небольшое крепление временного типа, которое располагается чуть выше интересующего участка перекрытия.
  2. Разрушенная часть демонтируется и перекладывается вновь. Здесь необходимо воспользоваться кирпичом и раствором М100.
  3. Кладка проводится при полной посадке кладочного материала. Вверху граница разрушенной и восстановленной стены замазывается цементной смесью указанной ранее марки.
  4. В процессе перекладывания перегородок можно использовать стальные клинья.
  5. По мере возведения новой стены в рамках 50% проводится разбор временных креплений.
  1. Начиная мероприятия, касающиеся перекладки , следует избавиться от причин, приводящих к таким изменениям.
  2. Если несущие перекрытия не требуют их замены, их перекладывают, осуществив предварительную установку временных конструкций в несколько этажей.
  3. Непостоянные сооружения следует убрать через 7 дней после того, как только закончится выкладка последних ярусов.
  4. Перед проведением разгрузок выбранного участка в верхней его части с двух сторон укладываются балки разгрузочного вида, их бороздки пробиваются и заделываются пневматическим молотком. Щели вертикального характера замазывают эластичным цементом.

Вернуться к оглавлению

Дополнительные варианты

Использование швеллера. Многие строители для усиления конструкции применяют жесткий пояс, швеллер. Он помогает приостановить возможное разрушение перекрытий и не позволяет стенам растягиваться.

Разновидности жестких поясов:

  • местные;
  • фиксируемые по периметру постройки;
  • общие;
  • употребляемые в целях ликвидации отрыва углов;
  • фиксируемые на точки разъединения двух стен;
  • определяемые на места появления разломов.

Для создания такого пояса требуется провести соответствующие действия:

  • вначале устанавливаются устройства с одной из сторон;
  • следом ремонтируется противоположная сторона.

Обустраивая пояса жесткости, важно выполнить установку стяжных болтов.

Армированная обойма. Восстановление кирпичной кладки, ликвидация щелей и предупреждение возникновения новых изъянов связываются с использованием армирования стен. Покрытие усиливается в момент, когда к работе подключаются арматурные каркасы, стержни, сетки, ж/б пилястры.

Арматурная сетка крепится анкерами или сквозными шпильками в просверленные отверстия.

Усиление сооружения арматурными сетками осуществляется так: этот материал фиксируется на заданный участок, с одной стороны. Она закрепляется в проделанные ранее отверстиях при помощи шпилек или анкерных болтов. Ее верхняя часть обмазывается цементным составом М100. Этот раствор заметно улучшает технические показатели основания. Штукатурный слой может достигать высоты до 40 мм.

Укрепляют угловые точки дополнительными стержнями. Если сетчатый механизм устанавливается с одной из сторон, его фиксируют болтами небольших размеров. Двустороннее покрытие предполагает фиксацию анкерными крепежами с сечением большого размера, до 12 мм через каждые 1000 мм.

Совет! Чтобы усилить объект, требуется использовать проектирование и обратиться за помощью к специалистам. В противном случае даже самые качественные материалы не улучшат ситуацию, а только ее усугубят из-за сильной нагрузки на фундамент и всю конструкцию.

  • Общая площадь квартир (м2) по нормам проектирования
  • § 1.5. Жизненный цикл зданий
  • § 1.6. Моделирование процесса физического износа зданий
  • § 1.7. Условия продления жизненного цикла зданий
  • § 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
  • Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
  • § 2.1. Общие положения
  • Классификация повреждений конструктивных элементов зданий
  • § 2.2. Физический и моральный износ зданий
  • Оценка степени физического износа по материалам визуального и инструментального обследования
  • § 2.3. Методы обследования состояния зданий и конструкций
  • § 2.4. Инструментальные средства контроля технического состояния зданий
  • Характеристики тепловизоров
  • § 2.5. Определение деформаций зданий
  • Значение предельно допустимых прогибов
  • § 2.6. Дефектоскопия конструкций
  • Повреждения и дефекты фундаментов и грунтов основания
  • Число точек зондирования для различных зданий
  • Значения коэффициента к снижения несущей способности кладки в зависимости от характера повреждений
  • § 2.7. Дефекты крупнопанельных зданий
  • Классификация дефектов панельных зданий первых массовых серий
  • Допустимая глубина разрушения бетона за 50 лет эксплуатации
  • § 2.8. Статистические методы оценки состояния конструктивных элементов зданий
  • Значение показателя достоверности
  • Глава 3 методы реконструкции жилых зданий
  • § 3.1. Общие принципы реконструкции жилых зданий
  • Методы реконструкции зданий
  • § 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
  • § 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
  • § 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
  • § 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
  • Уровень реконструктивных работ жилых зданий первых типовых серий
  • Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
  • § 4.1. Физическая модель надежности реконструируемых зданий
  • § 4.2. Основные понятия теории надежности
  • § 4.3. Основная математическая модель для изучения надежности зданий
  • § 4.4. Методы оценки надежности зданий с помощью математических моделей
  • § 4.5. Асимптотические методы в оценке надежности сложных систем
  • § 4.6. Оценка среднего времени до возникновения отказа
  • § 4.7. Иерархические модели надежности
  • Методики оценки функции надежности p(t) реконструированных зданий
  • § 4.8. Пример оценки надежности реконструируемого здания
  • Глава 5 основные положения технологии и организации реконструкции зданий
  • § 5.1. Общая часть
  • § 5.2. Технологические режимы
  • § 5.3. Параметры технологических процессов при реконструкции зданий
  • § 5.4. Подготовительные работы
  • § 5.5. Механизация строительных процессов
  • § 5.6. Технологическое проектирование
  • § 5.7. Проектирование технологических процессов реконструкции зданий
  • § 5.8. Календарные планы и сетевые графики
  • § 5.9. Организационно-технологическая надежность строительного производства
  • Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
  • Расчетное сопротивление грунтов по нормам 1932 - 1983 гг.
  • § 6.1. Технологии укрепления оснований
  • § 6.1.1. Силикатизация грунтов
  • Радиусы закрепления грунтов в зависимости от коэффициента фильтрации
  • Технология и организация производства работ
  • Механизмы, оборудование и приспособления для проведения инъекционных работ
  • Значения коэффициента насыщения грунта раствором
  • § 6.1.2. Закрепление грунтов цементацией
  • § 6.1.3. Электрохимическое закрепление грунтов
  • § 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
  • § 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
  • Прочность грунтоцементных образований
  • § 6.2. Технологии восстановления и усиления фундаментов
  • § 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
  • § 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
  • § 6.2.3. Усиление фундаментов сваями
  • § 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
  • § 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
  • Производство работ
  • § 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
  • § 6.3. Усиление фундаментов с устройством монолитных плит
  • § 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
  • § 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
  • § 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
  • § 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
  • § 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
  • § 6.5. Технология усиления кирпичных стен, столбов, простенков
  • § 6.6. Технология усиления железобетонных колонн, балок и перекрытий
  • Усиление конструкций композитными материалами из углеродных волокон
  • Глава 7 индустриальные технологии замены перекрытий
  • § 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
  • График производства работ при устройстве монолитного перекрытия по профнастилу
  • § 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
  • § 7.3. Технология замены перекрытий из крупноразмерных плит
  • § 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
  • § 7.5. Технология возведения монолитных перекрытий
  • § 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
  • Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий
  • Область эффективного применения различных конструктивных схем перекрытий
  • График производства работ по устройству сборно-монолитных перекрытий
  • Глава 8 повышение эксплуатационной надежности реконструируемых зданий
  • § 8.1. Эксплуатационные характеристики ограждающих конструкций
  • § 8.2. Повышение энергоэффективности ограждающих конструкций
  • § 8.3. Характеристики теплоизоляционных материалов
  • § 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
  • § 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
  • Физико-механические характеристики облицовочных плит
  • § 8.6. Технологии устройства вентилируемых фасадов
  • Характеристика средств подмащивания
  • График производства работ по теплозащите стен пятиэтажного 80-квартирного жилого дома серии 1-464
  • § 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
  • § 8.8. Управляемые технологии энергопотребления жилых зданий
  • Список литературы
  • § 6.5. Технология усиления кирпичных стен, столбов, простенков

    При реконструкции жилых зданий со стенами из кирпичной кладки возникает необходимость восстановления несущей способности или усиления элементов кладки вследствие увеличения нагрузок от надстраиваемых этажей. При длительной эксплуатации зданий наблюдаются признаки разрушения простенков, столбов и кладки стен в результате неравномерных осадок фундаментов, атмосферных воздействий, протечек кровли и др.

    Процесс восстановления несущей способности кладки следует начинать с исключения основных причин трещинообразования. Если этому процессу способствует неравномерная осадка здания, то следует исключить это явление известными и описанными ранее методами.

    До принятия технических решений по усилению конструкций важно оценить фактическую прочность несущих элементов. Эта оценка выполняется методом разрушающих нагрузок, фактической прочности кирпича, раствора, а для армированной кладки - предела текучести стали. При этом необходимо наиболее полно учитывать факторы, снижающие несущую способность конструкций. К ним относятся трещины, локальные повреждения, отклонения кладки от вертикали, нарушение связей, опирания плит и т.п.

    Что касается усиления кирпичной кладки, то накопленный опыт реконструкционных работ позволяет выделить ряд традиционных технологий, основанных на использовании: металлических и железобетонных обойм, каркасов; на инъецировании полимерцементных и других суспензий в тело кладки; на устройстве монолитных поясов по верхней части зданий (в случаях надстройки), предварительно напрягаемых стяжек и др. решений.

    На рис. 6.40 приведены характерные конструктивно-технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой.

    Рис. 6.40. Конструктивно-технологические варианты усиления кирпичных стен а - схема усиления кирпичных стен здания металлическими тяжами; б , в , г - узлы размещения металлических тяжей; д - схема размещения монолитного железобетонного пояса; е - то же, тяжами с центрирующими элементами: 1 - металлический тяж; 2 - натяжная муфта: 3 - монолитный железобетонный пояс; 4 - плита перекрытий; 5 - анкер; 6 - центрирующая рама; 7 - опорная пластинка с шарниром

    Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение. Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.

    Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины. Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

    Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

    Для элементов стен, простенков, столбов, имеющих разрушения кирпичной кладки, но не потерявших устойчивость, производится местная замена кладки. При этом марка кирпича принимается на 1-2 единицы выше, чем существующая.

    Технология производства работ предусматривает: устройство временных разгрузочных систем, воспринимающих нагрузку; разборку фрагментов нарушенной кирпичной кладки; устройство кладки. При этом необходимо учитывать, что удаление временных разгрузочных систем должно осуществляться после набора прочности кладки не менее 0,7R КЛ . Как правило, такие восстановительные работы ведутся при сохранении конструктивной схемы здания и фактических нагрузок.

    Весьма эффективны приемы восстановления неоштукатуренной кирпичной кладки, когда требуется сохранить прежний вид фасадов. В этом случае очень тщательно подбираются кирпич по цветовой гамме и размерам, а также материал швов. После восстановления кладки производится пескоструйная очистка, что позволяет получать обновленные поверхности, где новые участки кладки не выделяются из основного массива.

    В связи с тем что каменные конструкции воспринимают в основном сжимающие усилия, то наиболее эффективным способом их усиления является устройство стальных, железобетонных и армоцементных обойм. При этом кирпичная кладка в обойме работает в условиях всестороннего сжатия, когда поперечные деформации значительно уменьшаются и, как следствие, увеличивается сопротивление продольной силе.

    Расчетное усилие в металлическом поясе определяется по зависимости N = 0,2R KJl ×l ×b , где R KJl - расчетное сопротивление кладки скалыванию, тс/м 2 ; l - длина участка усиливаемой стены, м; b - толщина стены, м.

    Для обеспечения нормальной работы кирпичных стен и предотвращения дальнейшего раскрытия трещин первоначальным этапом является восстановление несущей способности фундаментов методами усиления, исключающей появление неравномерных осадок.

    На рис. 6.41 приведены наиболее распространенные варианты усиления каменных столбов и простенков стальными, железобетонными и армоцементными обоймами.

    Рис. 6.41. Усиление столбов стальной обоймой (а), армокаркасами (б), сетками и железобетонными обоймами (в , г ) 1 - усиливаемая конструкция; 2 - элементы усиления; 3 - защитный слой; 4 - щитовая опалубка с хомутами; 5 - инъектор; 6 - материальный шланг

    Стальная обойма состоит из продольных уголков на всю высоту усиливаемой конструкции и поперечных планок (хомутов) из плоской или круглой стали. Шаг хомутов принимается не более меньшего размера сечения, но не более 500 мм. Для включения обоймы в работу следует инъецировать зазоры между стальными элементами и кладкой. Монолитность конструкции достигается путем оштукатуривания высокопрочными цементно-песчаными растворами с добавкой пластификаторов, способствующих большей адгезии с кладкой и металлоконструкциями.

    Для более эффективной защиты на стальную обойму устанавливается металлическая или полимерная сетка, по которой осуществляется нанесение раствора толщиной 25-30 мм. При незначительных объемах работ раствор наносится вручную с помощью штукатурного инструмента. Большие объемы работ выполняются механизированным путем с подачей материала растворонасосами. Для получения высокопрочного защитного слоя используются установки торкретирования и пнев-мобетонирования. Из-за высокой плотности защитного слоя и большой адгезии с элементами кладки достигается совместная работа конструкции и повышается ее несущая способность.

    Устройство железобетонной рубашки осуществляется путем установки арматурных сеток по периметру усиливаемой конструкции с креплением ее через фиксаторы к кирпичной кладке. Крепление осуществляется путем использования анкеров или дюбелей. Железобетонная обойма выполняется из мелкозернистой бетонной смеси не ниже класса В10 с продольной арматурой классов А240-А400 и поперечной - А240. Шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и составляет 4-12 см. В зависимости от толщины обоймы существенно меняется технология производства работ. Для обойм толщиной до 4 см используются методы нанесения бетона торкретированием и пневмобетонированием. Окончательная отделка поверхностей достигается устройством штукатурного накрывочного слоя.

    Для обойм толщиной до 12 см по периметру усиливаемой конструкции устанавливается инвентарная опалубка. В ее щитах устанавливаются инъекционные трубки, через которые мелкозернистая бетонная смесь нагнетается под давлением 0,2-0,6 МПа в полости. Для повышения адгезионных свойств и заполнения всего пространства бетонные смеси пластифицируются путем введения суперпластификаторов в объеме 1,0-1,2 % массы цемента. Снижение вязкости смеси и повышение ее проницаемости достигаются дополнительным воздействием высокочастотной вибрации путем контакта вибратора с опалубкой рубашки. Достаточно хороший эффект

    дает импульсный режим подачи смеси, когда кратковременные воздействия повышенного давления обеспечивают более высокий градиент скоростей и высокую проницаемость.

    На рис. 6.41, г приведена технологическая схема производства работ путем инъецирования железобетонной обоймы. Установка опалубки производится на всю высоту конструкции с обеспечением защитного слоя арматурного заполнения. Нагнетание бетона осуществляется по ярусам (3-4 яруса). Процесс окончания подачи бетона фиксируется по контрольным отверстиям с противоположной стороны от места нагнетания. Для ускоренного твердения бетона используются системы термоактивных опалубок, греющих проводов и другие приемы повышения температуры твердеющего бетона. Демонтаж опалубки осуществляется по ярусам при достижении бетоном распалубочной прочности. Режим твердения при t = 60 °С обеспечивает распалубочную прочность в течение 8-12 ч прогрева.

    Железобетонные обоймы могут выполняться в виде элементов несъемной опалубки (рис. 6.42). При этом наружные поверхности могут иметь мелкий или глубокий рельеф или гладкую поверхность. После установки несъемной опалубки и крепления ее элементов обеспечивается замоноличивание пространства между усиливаемой и ограждающей конструкцией. Использование несъемной опалубки имеет значительный технологический эффект, так как отпадает необходимость в разборке опалубки, а главное - исключается отделочный цикл работ.

    Рис. 6.42. Усиление столбов с использованием опалубки-облицовки из архитектурного бетона 1 - усиливаемая конструкция; 2 - армокаркас; 3 - элементы облицовки; 4 - бетон омоноличивания

    Наиболее эффективными несъемными опалубками следует считать тонкостенные элементы (1,5-2 см), изготовленные из дисперсно-армированного бетона. Для вовлечения опалубки в работу она снабжается выступающими анкерами, существенно повышающими адгезию с укладываемым бетоном.

    Устройство растворных обойм отличается от железобетонных толщиной наносимого слоя и составом. Как правило, для защиты арматурной сетки и обеспечения ее адгезии с кирпичной кладкой используются штукатурные цементно-песчаные растворы с добавкой пластификаторов, повышающих физико-механические характеристики. Технология строительных процессов практически не отличается от выполнения штукатурных работ.

    Для обеспечения совместной работы элементов обоймы по ее длине, превышающей в 2 и более раз толщину, необходима установка дополнительных поперечных связей через сечение кладки. Усиление кирпичной кладки может быть произведено методом инъецирования. Оно осуществляется путем нагнетания через заранее пробуренные шпуры цементного или полимерцементного раствора. В результате достигается монолитность кладки и повышаются ее физико-механические характеристики.

    К инъекционным растворам предъявляются достаточно жесткие требования. Они должны обладать малым водоотделением, низкой вязкостью, высокой адгезией и достаточными прочностными характеристиками. Раствор нагнетается под давлением до 0,6 МПа, что обеспечивает достаточно обширную зону проникновения. Параметры инъекции: расположение инъекторов, их глубина, давление, состав раствора в каждом конкретном случае подбираются индивидуально с учетом трещиноватости кладки, состояния швов и других показателей.

    Прочность кладки, усиленной инъецированием, оценивается по СНиП II-22-81* «Каменные и армокаменные конструкции». В зависимости от характера дефектов и вида инъецированного раствора устанавливаются поправочные коэффициенты: тк = 1,1 - при наличии трещин от силовых воздействий и при использовании цементного и полимерцементного растворов; тк = 1,0 - при наличии одиночных трещин от неравномерных осадок или при нарушении связи между совместно работающими стенами; тк = 1,3 - при наличии трещин от силовых воздействий при инъекции полимерных растворов. Прочность растворов должна быть в пределах 15-25 МПа.

    Усиление кирпичных перемычек достаточно распространенное явление, что связано со снижением несущей способности распорной кладки вследствие выветривания швов, нарушения адгезии и другими причинами.

    На рис. 6.43 приведены конструктивные варианты усиления перемычек с использованием различного рода металлических накладок. Они устанавливаются путем пробивки штраб и отверстий в кирпичной кладке и в дальнейшем омоноличиваются цементно-песчаным раствором по сетке.

    Рис. 6.43. Примеры усиления перемычек кирпичных стен а , б - путем подведения накладок из уголковой стали; в , г - дополнительными металлическими перемычками из швеллера: 1 - кирпичная кладка; 2 - трещины; 3 - накладки из уголков; 4 - полосовые накладки; 5 - анкерные болты; 6 - накладки из швеллера

    Для перераспределения усилий на железобетонные перемычки вследствие увеличения нагрузок на перекрытия используются металлические разгрузочные пояса, выполненные из двух швеллеров и объединенные болтовыми соединениями.

    Усиление и повышение устойчивости кирпичных стен. Технология усиления базируется на создании дополнительной железобетонной рубашки с одной или двух сторон стены (рис. 6.44). Технология производства работ включает процессы подготовки и очистки поверхности стен, сверления отверстий под анкеры, установки анкеров, крепления к анкерам арматурных стержней или сеток, омоноличивание. Как правило, при достаточно больших объемах работ используется механизированный метод нанесения цементно-песчаного раствора: пневмобетонированием или торкретированием и реже ручным способом. Затем для выравнивания поверхностей наносится затирочный слой и выполняются последующие операции, связанные с отделкой поверхностей стен.

    Рис. 6.44. Усиление кирпичных стен армированием а - отдельными стержнями арматуры; б - арматурными каркасами; в - арматурной сеткой; г - железобетонными пилястрами: 1 - усиливаемая стена; 2 - анкеры; 3 - арматура; 4 - штукатурный или торкрет-бетонный слой; 5 - металлические тяжи; 6 - арматурная сетка; 7 - армокаркас; 8 - бетон; 9 - опалубка

    Эффективным приемом усиления кирпичных стен является устройство железобетонных одно- и двусторонних стоек в штрабах и пилястр.

    Технология устройства двусторонних железобетонных стоек предусматривает образование штраб на глубину 5-6 см, высверливание сквозных отверстий по высоте стены, крепление с помощью тяжей арматурного каркаса и последующее омоноличивание образовавшейся полости. Для омоноличивания используют цементно-песчаные растворы с пластифицирующими добавками. Высокий эффект достигается при использовании растворов и мелкозернистых бетонов с предварительным домолом цемента, песка и суперпластификатора. Такие смеси кроме большой адгезии обладают свойством ускоренного твердения и высокими физико-механическими характеристиками.

    При возведении односторонних железобетонных пилястр требуется устройство вертикальных штраб, в полости которых устанавливают анкерные устройства. К последним осуществляется крепление арматурного каркаса. После его размещения производится установка опалубки. Она выполняется из отдельных фанерных щитов, объединенных хомутами и прикрепляемых к стене с помощью анкеров. Мелкозернистая бетонная смесь нагнетается с помощью насосов поярусно через отверстия в опалубке. Подобная технология применяется при двустороннем устройстве пилястр с той разницей, что процесс крепления щитов опалубки осуществляется с помощью болтов, перекрывающих толщину стены.

    Конструктивные схемы усиления каменных конструкций

    Эффективным способом усиления каменных конструкций является заключение кладки в стальную или железобетонную обойму.

    Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам усиливаемого элемента и хомутов из полосовой стали или круглых стержней, привариваемых к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения и не более 50 см. Стальная обойма должна быть защищена от коррозии слоем цементного раствора толщиной 25-30 мм. Для надежного сцепления раствора стальные уголки закрываются металлической сеткой.

    Железобетонная обойма выполняется из бетона класса не ниже В12,5 с армированием вертикальными стержнями и сварными хомутами. Расстояние между хомутами должно быть не более 15 см. Толщина обоймы назначается по расчету и может быть от 4 до 12 см. Ремонт поврежденной кладки стен, столбов, простенков, фундаментов осуществляется методом инъецирования, при котором в поврежденную кладку под давлением нагнетается жидкий цементный или полимерный раствор, что способствует замоноличиванию в кладке трещин, пор и пустот.

    Подготовительные работы при инъецировании кладки включают: определение места расположения скважин, высверливание скважин и установку в них металлических патрубков; очистку трещин и поверхности кладки от образующегося при сверлении шлама и пыли; герметизацию всех трещин путем оштукатуривания тонким слоем цементного раствора. При инъецировании применяется в качестве вяжущего для цементных и цементно-полимерных растворов портландцемент марки не ниже 400 тонкостью помола не менее 2400 см 2 /г. Раствор нагнетается в конструкцию под давлением до 0,6 МПа. Инъекционные патрубки длиной 6-10 см изготовляются из обрезков газовых труб и имеют на одном конце резьбу 5-6 витков.

    Ремонт каменных конструкций может осуществляться способом замены поврежденной кладки новой. Способ замены конструкций новыми требует предварительного устройства временных креплений на период производства работ, способных воспринять передающиеся на них вышерасположенные нагрузки. После устройства временных креплений допускается разборка старой кладки и выполнение новой с применением сетчатого армирования.

    Ремонт кирпичных и бетонных стен (рис. 4.1) при разрушении кладки от размораживания в сооружениях с повышенной влажностью производят путем нанесения с наружной стороны стены дополнительного слоя утеплителя с одновременным устройством воздушной прослойки. Дополнительный утеплитель защищает конструкцию стены от воздействия отрицательных температур, а воздушная прослойка служит для удаления из стен избытка влаги.

    Рис. 4.1 Устройство дополнительного слоя утеплителя с наружной стороны стены

    Стекло или минераловатные утеплители и профилированные листы (стальные или асбестоцементные) крепятся опорными уголками к стене с помощью специальных элементов. Профилированные листы к опорным уголкам крепятся самонарезающимися винтами. Вентилируемые прослойки образуются внутренними полостями профилированных листов.

    В случае ослабления прочности кладки до устройства ограждения с на-ружной стороны необходимо выполнить усиление кладки торкретированием.

    Усиление столбов, простенков и пилястр обоймами показано на рис. 4.2; 4.3. Несущая способность каменных и кирпичных столбов, простенков, пилястр и пилонов может быть значительно увеличена устройством стальных, железобетонных или армированных растворных обойм, создающих боковое обжатие кладки. Обоймы устраивают в тех случаях, когда несущая способность столбов, простенков и пилястр недостаточна при реконструкции и надстройке зданий или при значительных повреждениях кладки (трещины, раздробления, сколы).

    Рис. 4.2 Усиление столбов (простенков) обоймами: а - металлической; б - железобетонной; 1- кирпичный столб; 2 - стальные уголки; 3 - планки; 4 - бетон; 5 - продольная арматура диаметром 6-12 мм; 6 - хомуты диаметром 4-10 мм; 7 - новая кладка, армированная сетками через 3 ряда; 8 - сварка

    Рис. 4.3 Усиление пилястр обоймами: а - стальными; б - железобетонными; 1 - стальные уголки; 2 - соединительные планки (хомуты); 3 - упорная шайба 10-12 мм; 4 - болт диаметром 18-22 мм; 5 - зачеканка цементным раствором; 6 - хомут диаметром 18-22 мм; 7 - арматурная сетка диаметром 8-12 мм; 8 - бетон; 9 - бетонные сухарики

    Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам усиливаемого элемента, и хомутов (поперечных планок) из полосовой стали или круглых стержней, привариваемых к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения элемента и не более 55 см. Для защиты от коррозии стальную обойму оштукатуривают цементным раствором М50-100 толщиной 2-3 см по металлической сетке. Сечение уголков и хомутов определяют расчетом. Рекомендуется применять уголки с полками размером 50-75 мм и хомуты из полосовой стали сечением 40х5-60х12 мм или из круглой стали диаметром 12-30 мм.

    Для получения эффекта обжатия кладки зазор между кладкой и уголками следует тщательно заделывать (зачеканивать) цементным раствором М50-100 и обжимать с помощью напрягаемых обойм (рис. 4.4). Для натяжения гайки закручивают динамометрическим ключом. Величина натяжения 30-40 кН.

    Рис. 4.4 Усиление каменных столбов металлическими напрягаемыми обоймами: 1 - уголки; 2 - отрезок уголка; 3 - поперечный стержень; 4 - гайка; 5 - шайба; 6 - штукатурный слой; 7 - прямой клин; 8 - обратный клин; 9 - peбро жесткости; 10 - опорный уголок

    Железобетонная обойма выполняется из бетона В 12,5 и выше с армированием вертикальными стержнями диаметром 10-16 мм и хомутами диаметром 6-10 мм. Расстояние между хомутами должно быть не более 15 см. Класс бетона должен быть больше марки кирпича. Толщина обоймы принимается по расчету и может изменяться от 4 до 12 см. Бетонирование производится в опалубке.

    Усиление каменных конструкций армированными растворными обоймами производится так же, как и железобетонными обоймами. При этом на поверхность конструкций вместо бетона наносят слоями по 2-3 см цементный раствор М75-200 вручную, с помощью растворонасоса или торкретированием.

    При отношении ширины столба или простенка к толщине более двух в середине устанавливают дополнительные поперечные связи, пропускаемые через кладку на расстоянии не более двух толщин и не более 100 см.

    Поврежденные пилястры усиливают стальными или железобетонными обоймами, как показано на рис. 4.3. Обоймы должны охватывать пилястру с трех сторон. При этом через стену пропускают стяжные хомуты диаметром 18-22 мм. Хомуты после установки обоймы затягивают снаружи с помощью гаек, под которые подкладывают стальные упорные шайбы 10х10 см толщиной 10-12 мм или обрезки швеллеров.

    Перед устройством обойм поврежденную трещинами кладку столбов, простенков и пилястр рекомендуется усилить инъецированием цементного или цементно-полимерного раствора.

    Стальные, железобетонные и растворные обоймы рассчитывают в соответствии с Руководством по проектированию каменных и армокаменных конструкций (М.: Стройиздат, 1984).

    При местном повреждении кладки простенков, столбов, пилястр (вертикальные или косые трещины небольшой длины, раздробление и сколы кладки под концами перемычек в местах опирания балок, ферм) устройство обойм необязательно. Поврежденные участки достаточно стянуть одиночными хомутами (бандажами) из полосовой стали 6х60 (80) мм (рис. 4.5), а поврежденную кладку заинъецировать цементным раствором под давлением.

    Рис. 4.5 Усиление простенка стальным хомутом: 1 - хомут из полосовой стали 6х60 (80) мм; 2 - перемычка; 3 - заделка цементным раствором М100; 4 - трещина; 5 - простенок; 6 - сварка

    Монолитность и несущая способность поврежденных трещинами каменных конструкций (стен, столбов, простенков, сводов и т. п.) можно восстановить путем нагнетания (инъекции) в кладку под давлением до 0,6 МПа цементных, цементно-полимерных и полимерных растворов с помощью ручных или механических насосов. Монолитность и прочность кладки повышается благодаря склеивающему эффекту растворов и заполнению ими пустот и трещин в кладке.

    Несущую способность поврежденной трещинами кирпичной кладки при сжатии после инъецирования цементным и цементно-полимерным раствором рассчитывают как монолитной кладки в соответствии со СНиП П-22-81 «Каменные и армокаменные конструкции» с умножением на коэффициенты m к: при инъецировании цементным и цементно-полимерным растворами m к =1,1; то же, полимерными растворами m к =l,3; при инъецировании отдельных трещин, возникших под воздействием температуры, усадки, при неравномерных осадках фундаментов m к =1.

    Несущая способность кладки стен и фундаментов может быть значительно увеличена путем прикладки (новой кладки) или набетонки стен с одной или двух сторон. Прикладку стен и фундаментов выполняют из тех же материалов, что и основную стену.

    Для повышения несущей способности кладку армируют сетками и каркасами. Толщина прикладки, определяемая расчетом, может изменяться от 12 до 38 см и более. Для обеспечения совместной работы с основной кладкой прикладка должна иметь конструктивную связь с основной кладкой (перевязка, шпонки, штыри, сквозные стержни и т. п.).

    Набетонка стен выполняется из тяжелого или легкого бетонов В7,5-15, армированных сетками диаметром 4-12 мм (рис. 4.6). Толщина бетонных слоев, определяемая расчетом, колеблется от 4 до 12 см. Набетонку проводят на высоту этажа в опалубке с вибрированием или послойно бетонированием методом торкретирования.

    Для повышения сцепления бетона с кладкой горизонтальные и вертикальные швы предварительно расчищают, поверхность кладки стен насекают и промывают водой.

    Арматурные сетки крепят к стальным штырям диаметром 5-10 мм, заделанным на цементном растворе Ml00 в швы кладки или отверстия, просверленные электродрелью.

    Для стен из кирпича и камней правильной формы глубина заделки штырей 8-12 см, шаг штырей по длине и высоте 60-70 см, при шахматном расположении - 90 см.

    При двусторонней набетонке стен и фундаментов из бутовой кладки устанавливают сквозные связующие стержни диаметром 12-20 мм. Шаг стержней при хорошем сцеплении бетона с бутовой кладкой 1 м.

    Несущую способность стен и фундаментов, усиленных набетонкой, рассчитывают как для многослойных стен с жесткой связью между слоями в соответствии с Пособием по проектированию каменных и армокаменных конструкций (М., 1987) к СНиП П-22-81 .

    Рис. 4.6 Усиление стен набетонкой: 1 - стена; 2 - плиты перекрытий; 3 - набетонка; 4 - штыри диаметром 10 мм; 5 - арматурная сетка диаметром 6-8 мм

    Столбы и простенки перекладывают в следующих случаях: когда усиление конструкций обоймами, инъекцией и т.п. экономически и технически нецелесообразно (значительное повреждение или ослабление сечения, аварийное состояние кладки); при надстройке и реконструкции зданий, когда указанные способы усиления недостаточны; при необходимости сохранения архитектурного облика здания.

    Столбы и простенки, подлежащие перекладке, разбирают после устройства на время работ временных креплений, которые должны быть рассчитаны на восприятие нагрузок, действующих на заменяемый столб или простенок. Заменять простенки рекомендуется поочередно.

    Временные крепления столбов и простенков рекомендуется выполнять в виде деревянных или металлических стоек на клиньях, устанавливаемых в непосредственной близости от разбираемой конструкции (рис. 4.7), либо путем частичной или полной временной закладки проемов по обе стороны от простенка.

    Рис. 4.7 Укрепление поврежденных простенков стойками и разгрузка их от веса перекрытий: 1 - подкладка; 2 - стойка; 3 - клинья; 4 - лежень; 5 - перемычка; 6 - балка

    При разборке простенков и столбов следует соблюдать меры безопасности при постоянном контроле состояния стоек и их подклинки. Использовать пневматические молотки для разборки кладки поврежденных простенков не рекомендуется.

    Для кладки новых столбов и простенков применяют материалы повышенной прочности: каменные материалы (кирпич, бетонные и природные камни) марки 100 и выше на цементном растворе марки 100-150. При необходимости кладку армируют стальными сетками, располагаемыми в горизонтальных швах.

    Для обеспечения плотного прилегания новой кладки к старой верх новой кладки не доводят до старой на 3-5 см с последующей тщательной зачеканкой зазора плотным («сухим») цементным раствором марки 100-150. Временные крепления разбирают при достижении раствором новой кладки 50 % проектной прочности.

    Поверхностные слои и облицовку стен восстанавливают следующим образом. Выветрившиеся, размороженные и отслоившиеся слои кладки или облицовки стен удаляют и заменяют новой кладкой (облицовкой), конструктивно связанной со старой неповрежденной кладкой. Возводить новую кладку или облицовку без конструктивной связи со старой не допускается. Новая кладка (облицовка) выполняется из тех же или более прочных и морозостойких материалов на цементном растворе М50-100. Конструктивная связь новой и старой кладок обеспечивается перевязкой тычковых рядов (при возможности) либо с помощью стальных сеток и каркасов из стержней диаметром 3-4 мм или «усов» из вязальной или отожженной проволоки, заделанных в горизонтальные швы новой кладки через 60-90 см по высоте (кратно высоте ряда). Сетки, каркасы и «усы» крепят к стальным штырям диаметром 5-8 мм (рис. 4.8). Штыри забивают или заделывают на цементном растворе М100 в швы кладки на глубину 6-12 см. «Усы» могут заделываться в швы кладки на цементном растворе без штырей (петлей).

    Вертикальный шов между старой и новой кладкой (облицовкой) заполняют цементным раствором. Замену разрушенных или отслоившихся слоев кладки и облицовки рекомендуется выполнять последовательно участками длиной не более 5 м в соответствии с ППР и с соблюдением мер безопасности.

    В зависимости от конструктивных и архитектурных требований к монолитности и лицевой фактуре наружных поверхностей (фасадам) стен трещины рекомендуется заделывать путем инъекции и зачеканки цементным раствором, закладки кирпичом или заделки бетоном и путем залицовки поверхностей кладки кирпичом (камнем).

    Инъекцию трещин с раскрытием до 4 мм выполняют нагнетанием цементного или цементно-полимерного раствора под давлением. При раскрытии трещин более 4 мм заделку трещин раствором можно выполнять с помощью растворонасоса или пневмонагнетателя.

    Рис. 4.8 Крепление кирпичной облицовки к старой кладке штырями: 1 - старая кладка; 2 - облицовка; 3 - стальной штырь или гвоздь диаметром 5-8 мм; 4 - «усы» из проволки или арматурные сетки (пунктир) диаметром 3-4 мм; 5 - цементный раствор

    Заделка (зачеканка) трещин цементным раствором рекомендуется при раскрытии трещин более 3 мм в случаях, когда полное заполнение трещин раствором не обязательно. Зачеканку цементным раствором М100 производят на глубину 2-4 см с каждой стороны после расчистки и промывки трещин водой.

    Крупные трещины (разломы) с раскрытием более 5 см закладывают кирпичом на растворе М50-100 с перевязкой или без перевязки с основной кладкой или трещины заделывают бетоном (раствором) В3,5-7,5 на легких заполнителях.

    Залицовку трещин и разломов стен выполняют, когда необходимо сохранить лицевую фактуру кладки из кирпича, камней или облицовки. При этом кладку стены по длине трещины разбирают на глубину в полкирпича и ширину не менее одного кирпича (камня) с последующей закладкой штрабы новым кирпичом в перевязку со старым (рис. 4.9).

    В стенках и перегородках толщиной 25 см и менее разборку поврежденной кладки в зоне трещины и ее замену производят на всю толщину стены. Стены и простенки, имеющие продольное расслоение кладки (продольные трещины), должны стягиваться в поперечном направлении болтами с шайбой. Трещины заделывают инъекцией цементного или цементно-полимерного раствора, как указано выше. Диаметр стяжных болтов не менее 16 мм; шаг болтов по длине и высоте 60-70 см, при расположении болтов в шахматном порядке - 90 см.

    Рис. 4.9 Заделка трещин с разборкой старой кладки

    Усиление напрягаемыми стальными тяжами и поясами поврежденных трещинами стен и перекрытий одноэтажных и многоэтажных зданий (рис. 4.10, 4.11) проводят в целях: восстановления или повышения монолитности, пространственной жесткости зданий и прочности и устойчивости стен и перекрытий; прекращения развития деформаций стен из плоскости (наклонов, выпучивания); уменьшения или прекращения развития трещин в стенах и перекрытиях при неравномерных осадках фундаментов, температурно-влажностных воздействиях и при разной жесткости и нагруженности сопряженных стен.

    Тяжи должны иметь натяжное устройство (муфты, гайки) или напрягаться термонагревом с помощью паяльных ламп или автогена. Усиление натяжения должно составлять 30-50 кН. Натяжение контролируют специальными приборами (тензометрами, тензодатчиками, индикаторами) или простукиванием (при ударе напряженный тяж должен издавать звук высокого тона). Натяжение проводят одновременно по всему контуру здания после заделки трещин цементным раствором под давлением. Расстояние между тяжами рекомендуется принимать 4-6 м с таким расчетом, чтобы на один тяж приходилась площадь стены не более 20 м 2 .

    Рис. 4.10 Крепление стен металлическими тяжами в уровне перекрытий: а - внутри здания; б - снаружи здания; в - разрез; г - вариант укладки тяжей в штрабу; 1 - тяж; 2 - муфта натяжения; 3 - металлическая подкладка; 4 - швеллер № 16-20; 5 - уголок; 6 - цементный раствор марки 100

    Рис. 4.11 Крепление выпучившейся стены металлическими тяжами: 1 - стена; 2 - тяж; 3 - натяжная муфта; 4 - траверса из швеллера № 14-16; 5 - подкладка

    В многоэтажных зданиях тяжи снаружи и внутри помещений устанавливают в уровне верха перекрытий. В одноэтажных промышленных зданиях тяжи устанавливают по осям ферм или несущих балок в непосредственной близости от их опор и крепят к ним от провисания.

    При усилении каменных стен снаружи поясами (рис. 4.10) тяжи укладывают на поверхности стен в штрабы сечением 70х80 мм, вырубленные в кладке, которые после натяжения тяжей заделывают цементным раствором М100-150.

    Концевые упоры тяжей выполняют в виде металлических пластинок 10х10-15х15 см толщиной 10-12 мм или из отрезков швеллеров. Концы стержней (тяжей) должны иметь нарезку с гайкой.

    При отсутствии перевязки или образовании вертикальных трещин в местах сопряжения наружных и внутренних стен монолитность кладки можно восстановить путем установки в уровне верха перекрытий напрягаемых хомутов из стержней диаметром 20-24 мм длиной 1,5-2 м (рис. 4.12).

    Хомуты анкерят в поперечные стены с помощью отрезков уголков или швеллеров. Натяжение хомутов производят закручиванием гаек. Трещины или зазор между стенами заделывают цементным раствором под давлением.

    Местное усиление поврежденных трещинами углов зданий и отдельных участков стен может выполняться двусторонней накладкой (обвязкой) металлических полос сечением 6х80-10х100 мм или швеллеров № 14-20, стянутых болтами диаметром 16-20 мм (рис. 4.13).

    Поврежденные трещинами или разрушенные рядовые или клинчатые перемычки проемов перекладывают или усиливают подводкой стальных балок из швеллеров. Балки укладывают в штрабы, вырубленные с двух сторон стены, и стягивают болтами или хомутами (рис. 4.14). Металлические балки после установки покрывают сеткой и штукатурят цементным раствором М50-100.

    Железобетонные перемычки в зависимости от степени повреждения ремонтируют (усиливаются) или заменяют новыми. Перемычки, на которые опираются балки или плиты перекрытий, при замене или перекладке необходимо полностью разгрузить путем подводки под опоры балок и плит временных креплений в виде стоек или рам (см. рис. 4.7). Стойки и рамы должны устанавливаться на клиньях.

    Стальные тяжи, балки, обвязки, шайбы, хомуты, подвергающиеся атмосферным воздействиям или находящиеся в помещениях с влажным и мокрым режимами, должны иметь антикоррозионную защиту.

    Рис. 4.12 Усиление стальными тяжами пересечения кирпичных стен, ослабленного трещиной или швом: 1 - тяж диаметром 20 мм; 2 - шайба 75х75х8; 3 - трещина, инъецированная цементным раствором М100; 4 - уголок или швеллер; 5 - штраба, залицованная кирпичом

    Рис. 4.13 Усиление угла металлическими балками 1 - металлические балки № 16-20; 2 - стяжные болты диаметром 16-20 мм

    Рис. 4.14 Усиление рядовых и клинчатых перемычек 1 - кладка; 2 - швеллер; 3 - болт; 4 - штукатурка по сетке

    Предыдущая

    Усиление каменных конструкций из кирпича

    Необходимость усиления строительных конструкций в процессе их эксплуатации возникает как при реконструкции и техническом перевооружении здании, так и вследствие физического износа и различных повреждений, вызванных коррозией материалов, механическими воздействиями, воздействиями агрессивной среды, некачественным изготовлением конструкций и нарушением норм производства строительно- монтажных работ, нарушением правил эксплуатации и условий технологии производства.

    Восстановление и усиление каменных конструкций может быть выполнено различными способами, которые можно условно объединить в три группы: усиление без изменения расчетной схемы, с изменением расчетной схемы и с изменением напряженного состояния.

    Результаты обследования каменных зданий, их конструкций и элементов обобщаются в техническом заключении, в котором на основании их технического состояния делаются выводы о необходимости их усиления или восстановления .

    1. Методы восстановления конструкций из кирпича

      Наиболее распространенными методами восстановления каменных конструкций являются: оштукатуривание, инъецирование имеющихся трещин, частичная или полная перекладка элементов.

      Восстановление элементов оштукатуриванием применяется при поверхностных повреждениях кладки в виде выветривания раствора, размораживания, расслоения на глубину до 150 мм, а также при наличии стабилизированных осадочных трещин. Оштукатуривание осуществляется вручную (при глубине повреждения до 40 мм) или торкретированием раствором марки М75 и выше на основе цемента.

      Для обеспечения надежного сцепления штукатурного слоя с кирпичной кладкой производят подготовку оштукатуриваемой поверхности: кладку очищают от поврежденного кирпича и раствора, промывают и высушивают. При большой площади и толщине штукатурного слоя дополнительно расчищают горизонтальные швы на глубину 10...15 мм, на кладке выполняют насечку поверхности, устанавливают металлические сетки из проволоки диаметром 2...6 мм или стеклосетки. Металлические сетки могут выполняться на месте путем обвязки проволокой диаметром 2...3 мм вокруг анкеров диаметром, не превышающих толщину шва (рисунок 30). Края сеток заводят за поврежденный участок на длину не менее 500 мм. Если поврежденный участок находится вблизи угла здания, сетку заводят за угол на стену не менее чем на 1000 мм.

      Для восстановления и усиления каменной кладки, имеющей сквозные трещины силового и осадочного характера (при стабилизировавшихся осадках), применяется инъецирование цементным и полимерным растворами путем их нагнетания под давлением до 0,6 МПа с помощью нагнетательных устройств.

      Рисунок 30 – Восстановление кирпичных стен: а - с использованием обвязки из проволоки, б - с использованием готовых сеток: 1 - анкер, 2 - проволока, 3 - сетка, 4 - гвозди, 5 - восстанавливаемая кладка, 6 – раствор

      Расчетное сопротивление каменной кладки, усиленной инъецированием раствора в трещины, принимается с учетом поправочного коэффициента m k , зависящего от вида раствора и характера трещин:

      m k = 1,1 – для кладки с трещинами от силовых воздействий, инъецированных цементным раствором;

      m k = 1,3 – то же, полимерным раствором;

      m k = 1,0 – для кладки с трещинами от неравномерной осадки или нарушением связи между отдельными элементами, инъецированными цементным или полимерным растворами.

      Частичная (полная) перекладка производится при наличии большого количества мелких, одиночных глубоких и сквозных трещин при стабилизировавшихся осадках здания. Для перекладки применяют кирпич и раствор марки, не ниже марки кирпича и раствора восстанавливаемой кладки. При перекладке участков должна быть сохранена принятая перевязка швов (рисунок 31).

      Рисунок 31 – Восстановление каменной кладки частичной перекладкой: а - частичная перекладка с одной стороны, б - то же с двух сторон: 1 - трещина, 2 - восстанавливаемая стена, 3 - частичная перекладка

      Для восстановления целостности кирпичных стен, имеющих сквозные трещины силового и осадочного характера, применяют скобы из круглой стали диаметром не менее 6 мм, концы которых закрепляются в устраиваемых отверстиях в кладке на глубину 100 мм и более, а также накладки из листового или профильного металла, закрепляемые на усиливаемых участках стен с помощью стяжных болтов (рисунок 32). Скобы и накладки могут размещаться с одной (при толщине стены 640 мм и менее) или двух сторон (при большей толщине) усиливаемого участка, на поверхности, в горизонтальных швах (для скоб диаметром, не превышающем толщину шва) и в предварительно подготовленных штрабах. Размещение накладок в штрабах эффективно при смещениях участков стен, разделенных трещиной, относительно друг друга по вертикали.

      В качестве накладок применяются прокатные профили в виде швеллеров

      № 16...20, уголков с шириной полки, примыкающей к стене, 75...100 мм, а также полосовая сталь шириной 70 мм и более. Стяжные болты выполняют из круглой стали диаметром 16...22 мм. Расстояние от трещины до

      ближайших к ней стяжных болтов должно составлять не менее 600 мм. В случае если трещина находится вблизи угла здания, накладки заводятся за угол не менее чем на 1000 мм. После монтажа накладок штрабы заполняют бетоном. Стальные накладки, устанавливаемые на поверхности стен без устройства штраб, покрывают антикоррозионными составами или оштукатуривают по сетке .


      Рисунок 32 – Усиление стен наладками: а - общий вид усиления, б -

      усиление простенка, в - усиление вблизи угла здания: 1 - стальная накладка, 2

      Стяжной болт, 3 - гайка, 4 - штраба, 5 - опорная пластина (полоса), 6 -

      уголок, 7 – трещина

    2. Усиление элементов конструкций из кирпича

      При невозможности достижения требуемой степени повышения прочности без увеличения поперечного сечения элемента применяют методы усиления, увеличивающие площадь поперечного сечения путем устройства наращивания или обойм.

      Наращивание может быть каменным, армокаменным или железобетонным.

      Для наращивания применяется кирпич и раствор марок не ниже фактической условной марки кирпича и раствора, полученной при испытании образцов из усиливаемой конструкции.

      Наращивание устраивают толщиной в 1/2 кирпича или более. Совместная работа с кирпичной кладкой усиливаемой конструкции обеспечивается путем устройства борозд в усиливаемой кладке глубиной в 1/2 кирпича или с помощью анкеров, забиваемых в швы. Для кладки наращивания возможно применение продольного и поперечного армирования.

      Расчет прочности каменных конструкций, усиленных каменным (армокаменным) наращиванием, производится по с учетом его совместной работы с усиливаемой конструкцией путем введения дополнительного коэффициента условий работы к расчетному сопротивлению каменной кладки наращивания, равного:

        при усилении элемента под нагрузкой, превышающей 70 % расчетной,

        γ k , ad = 0,8.

        при усилении элемента под нагрузкой, не превышающей 70 %

      расчетной, γ k , ad = 1.

      Для устройства наращивания из железобетона применяется бетон класса не ниже C12/15. Железобетонная часть возводится в предварительно подготовленных нишах или существующих каналах кирпичной кладки (рисунок 33). Процент армирования железобетонной части сечения должен составлять 0,5…1,5 %. Так как деформативность каменной кладки существенно выше деформативности железобетона, то при усилении под нагрузкой дополнительные бетон и арматура работают совместно с усиливаемой конструкцией и достигают своего расчетного сопротивления в предельном состоянии.

      Рисунок 33 – Усиление простенков с пилястрами монолитными железобетонными элементами: а, в - сквозная пробивка стены; б, г - устройство углублений с одной стороны: 1 - усиливаемая кладка, 2 - продольная арматура, 3 - поперечная арматура, 4 - бетон усиления

      Эффективным методом увеличения прочности каменной кладки при малых эксцентриситетах является устройство обойм: стальной, железобетонной и растворной.

      Наиболее массовыми элементами, усиливаемыми обоймой, являются столбы и простенки. Столбы, как правило, имеют прямоугольную форму поперечного сечения с соотношением сторон не более 1,5, что способствует эффективной работе обойм, ограничивающих поперечные деформации в сечении. Простенки имеют вытянутую в плане форму, обычно с соотношением сторон более двух. При этом для эффективного использования обойм устанавливаются дополнительные связи в виде стяжных болтов или анкеров. Допускаемые расстояния между связями (анкерами, хомутами) не более 1000 мм и не более двух толщин стены по длине, по высоте - не более 750 мм. Связи надежно закрепляют в усиливаемой кладке.

      Стальная обойма - это система из продольных элементов уголкового профиля (рисунок 34), устанавливаемых на растворе по углам или выступам конструкции и приваренных к ним поперечных элементов (планок) в виде

      полосовой или арматурной стали, а также опорных подкладок (при усилении всего столба или простенка, когда на продольные элементы передается часть усилий от вышерасположенных конструкций). Шаг планок принимают не более меньшего размера поперечного сечения и не более 500 мм.

      Для повышения эффективности усиления поперечные планки рекомендуется напрягать. Для этого со стороны двух противоположных граней к продольным элементам приваривают планки только с одного конца. После чего нагревают планки до 100...120°С и приваривают в нагретом состоянии второй свободный конец к вертикальным уголкам. При остывании планок происходит обжатие усиливаемой конструкции.


      Рисунок 34 – Усиление каменных конструкций стальной обоймой: 1 - усиливаемая конструкция, 2 - уголок, 3 - планка, 4 - поперечная связь, 5 - полоса, 6 - анкеры, 7 - болт, 8 - опорный уголок, 9 - стальная пластина

      Железобетонная обойма (рисунок 35) представляет собой пространственный арматурный каркас из продольной и поперечной арматуры, омоноличенный бетоном. Этот вид обоймы применяется при

      значительных повреждениях кладки и позволяет значительно повысить прочность усиливаемого каменного элемента.

      Толщину обоймы и площадь поперечного сечения арматуры определяют расчетом. Ориентировочно толщина обоймы принимается 40…120 мм, диаметр поперечных стержней - 4…10 мм. Для обеспечения сцепления с бетоном продольная арматура отстоит от усиливаемой кладки не менее чем на 30 мм. Шаг хомутов принимают согласно расчету, но не более 150 мм. Шаг продольной арматуры - 250…300 мм. Для обоймы рекомендуется применять бетоны классов C12/15 и выше.

      Для увеличения площади контакта кладки с элементами усиления обоймы рекомендуется в кладке через каждые 3-4 ряда выполнять борозды на глубину 1/2 кирпича или расчищать швы кладки на 10…15 мм в глубину. Бетонирование производится методом инъецирования, нагнетая смесь через инъекционные отверстия в опалубке, торкретированием или последовательным бетонированием с наращиванием опалубки.


      Рисунок 35 – Усиление железобетонной обоймой: а - столбов, б - простенков: 1 - усиливаемая конструкция, 2 - продольная арматура, 3 - поперечная арматура, 4 - бетон, 5 - дополнительные поперечные связи, 6 - продольная арматура, 7 – анкеры

      Армированная растворная обойма выполняется по аналогии с железобетонной, но вместо бетона применяют раствор марки не ниже М50. Растворная обойма позволяет сохранить существующие размеры поперечного сечения практически без изменения. При производстве работ не применяется опалубка. Цементный раствор, наносимый тонким слоем порядка 30…40 мм, выполняет функции связи между усиливаемой кладкой и арматурой и защищает арматуру от коррозии. Минимальная толщина защитного слоя составляет: для внутренних сухих помещений - 15 мм, для наружных и влажных помещений - 20…25 мм.

      Для усиления каменных конструкций под нагрузкой, превышающей 70..80 % от расчетной, эффективно (позволяют повысить прочность каменных конструкций в 2-3 раза) применение предварительно напряженных распорок, установленных с одной или с двух сторон конструкции, в которых рабочими элементами являются вертикальные ветви распорки, а поперечные планки выполняют роль соединительных элементов, уменьшающих свободную длину ветвей.

      Предварительно напряженные распорки (аналогично усилению железобетонных конструкций) состоят из уголковых профилей, располагаемых по углам конструкции и связанных друг с другом планками из полосовой стали или стержневой арматуры. Сверху и снизу распорки передают нагрузку на опорные уголки. Предварительное напряжение распорок осуществляется путем их перегиба в середине длины или с помощью домкратов .

      Расчет каменных конструкций, усиленных обоймами, производится в соответствии с .

    3. Усиление сопряжений элементов конструкций из кирпича

      Для восстановления целостности стен в местах сопряжения применяютстальные затяжки (рисунок 36),шпонки (рисунок 37),гибкие связи в виде анкеров (рисунок 38), а такжеперекладку поврежденных участков.

      Стальные затяжки выполняют из круглой стали диаметром 20...25 мм с резьбой по концам и распределительных прокладок из уголков или швеллеров. Стальные затяжки располагают, как правило, в уровне перекрытия. Устройство затяжек производят в следующей последовательности: устраивают горизонтальную штрабу в продольной стене на глубину 60…130 мм, просверливают отверстия для тяжей. В поперечных стенах на расстоянии не менее 1000 мм от места разрыва пробивают отверстие для установки распределительной прокладки. Тяжи закрепляют на распределительных прокладках и предварительно напрягают завинчиванием гаек на концах в сочетании с нагреванием тяжей. После монтажа затяжек тяжи покрывают антикоррозионными составами, а штрабы заполняют бетоном или заделываются кирпичом.

      Рисунок 36 – Восстановление сопряжений стен стальными затяжками: 1

      Продольная стена, 2 - поперечная стена, 3 - перекрытие, 4 - тяжи, 5 -

      распределительные прокладки, 6 - гайки, 7 - цементный раствор


      Рисунок 37 – Восстановление сопряжений железобетонными шпонками: а - с вертикальными арматурными каркасами, б - то же, с горизонтальными каркасами


      Рисунок 38 – Восстановление сопряжений гибкими связями: 1 - продольная стена, 2- железобетонная колонна, 3 - закладная деталь колонны, 4 - сварка, 5 – анкер

      Для восстановления сопряжений стен также используются шпонки: железобетонные и стальные. На этаж устанавливается не более 2-3 шпонок. Для первого этажа: в уровне пола у фундамента, в середине стены и в уровне перекрытия.

      Железобетонные шпонки состоят из арматурного каркаса из стержней

      16…20 мм и бетона класса C12/15 и выше.

      Стальные шпонки выполняют из пластин, уголков, швеллеров. При устройстве стальных шпонок пробивают вертикальные штрабы длиной 400…600 мм. Монтаж шпонок производят на растворах повышенной прочности. Шпонки оборачивают металлической сеткой, а после монтажа стягивают болтами диаметром не менее 16 мм и оштукатуривают раствором.

      Перекладка участков стен, простенков осуществляется в случаях значительных отклонений от вертикали, сдвигов, перекосов, выпучиваний,

      когда отклонение от первоначального положения составляет более 1/3 толщины, с обязательным креплением гибкими связями к близлежащим конструкциям: стенам, колоннам, перекрытиям и покрытиям .

    4. Повышение пространственной жесткости кирпичных зданий

      В результате неравномерной осадки оснований фундаментов, различной жесткости элементов и разнонагруженности стен, а также при воздействиях природных и техногенных факторов происходит нарушение пространственной жесткости коробки здания в целом или какой-либо ее части.

      Для восстановления целостности остова здания применяют пояса, которые воспринимают неравномерные деформации, растягивающие усилия кладки и способствуют перераспределению нагрузки на основание.

      В зависимости от характера проводимых работ (восстановление жесткости эксплуатируемого здания, реконструкция или надстройка), причин и вида повреждений применяются стальные (гибкие, жесткие), армокаменные или железобетонные пояса.

      Стальные гибкие напрягаемые пояса (рисунок 39) представляют собой систему горизонтальных распределительных устройств, состоящих из тяжей диаметром 20...40 мм, напрягаемых при помощи муфт с двухсторонней резьбой (правой и левой) или закручиванием гаек на концах, концевых и промежуточных упоров.

      Поясами создается один или несколько замкнутых контуров по стенам.

      Производится объемное обжатие всего здания или его части.

      С целью эффективного обжатия всей коробки здания длину большей части пояса рекомендуется принимать не более 1,5 коротких. В многоэтажных зданиях тяжи устанавливают в уровне перекрытий. Допускается связь тяжей с перекрытиями. В промышленных и общественных

      одноэтажных зданиях тяжи устанавливают в уровне низа стропильных конструкций.

      Пояса устанавливают либо на поверхности стен, ухудшая внешний вид, но сокращая трудоемкость работ, либо в штрабах кладки, не меняя внешнего вида и надежно предохраняя металлические детали от коррозии.

      При устройстве пояса в кладке пробивают горизонтальные штрабы глубиной 70…80 мм и сквозные отверстия для продольных и поперечных тяжей. На углах здания на растворах повышенной прочности вертикально устанавливают отрезки уголков. Если пояса устанавливают на поверхности стен, для удобства монтажа и исключения провисания тяжей по длине в кладку забивают промежуточные скобы.

      Монтаж поясов усиливаемого здания осуществляется последовательно снизу вверх (рисунок 39).

      Предварительное напряжение производят с помощью соединительных муфт одновременным натяжением всех тяжей или первоначально напрягают тяжи проходящие внутри здания, а затем - снаружи. Натяжение производят динамометрическим ключом, домкратом или ломиком с плечом 1500 мм с усилием на конце 30...40 кг. Для уменьшения трудоемкости натяжения рекомендуется осуществлять электро- или термонагрев тяжей. Степень натяжения следует контролировать приборами. Тяжи считаются натянутыми, если они не провисают и при ударе по ним ломиком издают звук высокого тона. При устройстве тяжей в условиях пониженных температур выполняется их дополнительное натяжение. После фиксации тяжей и их напряжения производится инъецирование трещин в стенах или выполняется частичная перекладка в зависимости от характера и степени повреждения.

      Рисунок 39 – Усиление здания стальными предварительно напряженными поясами: 1 - тяж, 2 - стяжная муфта с двухсторонней резьбой, 3 - упорный уголок, 4 - накладка из швеллера, 5 - гайка с шайбой

      Расчет сечения гибких тяжей производят из условия равной прочности тяжей на растяжение и каменной кладки на срез. Расчетное усилие определяется по формуле

      (16)

      где R sq - расчетное сопротивление кладки на срез, МПа; l - длина стены; b -

      толщина стены.

      Стальные жесткие пояса (рисунок 40) выполняются из профильной стали (в основном, из швеллеров, уголков и полосовой стали) и предназначаются для передачи усилий на более прочные участки. Пояса охватывают все здание или его часть, выполняются замкнутыми или незамкнутыми. Незамкнутые пояса применяют при разрывах здания, продольных и поперечных стен, углов. Номер профиля назначается конструктивно.


      Рисунок 40 – Усиление части здания устройством предварительно напряженного стального пояса из прокатных профилей: 1 - трещина, 2 - пояс из швеллера, 3 - стяжной болт, 4 - гайка, 5 - анкер

      Стальные жесткие пояса могут выполняться предварительно напряженными. Натяжение жестких поясов осуществляется с помощью болтовых соединений (рисунок 41). Диаметр натяжного болта (шпильки) определяется расчетом и ориентировочно составляет 20...25 мм.

      Стальные жесткие пояса устанавливают по всему контуру здания или его части в штрабах или на поверхности стен. В зависимости от толщины стены пояса располагаются с одной или двух сторон стены: при толщине более 640 мм - с двух сторон, при толщине менее 640 мм - с одной.

      Фиксация двухсторонних поясов выполняется болтами диаметром 16...20 мм, которые при помощи гаек стягивают пояса друг с другом и играют роль анкеров. При расположении пояса с одной стороны совместная

      работа достигается за счет устройства анкеров (рисунок 40, вариант А (в штрабе). Шаг болтов - 2000...2500 мм, анкеров - 500...700 мм.


      Рисунок 41 – Натяжное устройство предварительно напряженного стального пояса из прокатных профилей

      Стальные гибкие и жесткие пояса, установленные на поверхности стен, вместе с муфтами, упорными уголками, накладками, огрунтовывают и окрашивают или оштукатуривают по сетке.

      При надстройке здания с целью повышения его пространственной жесткости в уровне перекрытий, покрытий выполняют армокаменные (рисунок 42,а) или железобетонные (рисунок 42,б) пояса жесткости.

      Рисунок 42 – Усиление стен здания поясами: а - армокаменным; б - железобетонным: 1 - кирпичная кладка стен, 2 - армокаменный пояс, 3 - стальная сетка, 4 - железобетонный пояс, 5 - продольная арматура, 6 - поперечная арматура, 7 – утепление

      При устройстве армокаменного пояса допускается применение продольных стержней арматуры в поясе диаметром до 12 мм с утолщением шва до 25 мм. Ориентировочно площадь продольной арматуры пояса в стенах толщиной до 510 мм можно принимать в пределах 4,5 см 2 , а при большей толщине - 6,5 см 2 .

      Железобетонный пояс выполняется из бетона класса не ниже C12/15 с армированием пространственным арматурным каркасом. Возможно использование жесткой арматуры в поясе. Высота поперечного сечения пояса составляет не менее 120 мм, ориентировочно ширина сечения пояса принимается равной: при толщине стены до 510 мм - толщине стены с учетом утепления, при толщине стены более 510 мм - возможно устройство меньшего по ширине пояса. В месте устройства железобетонного пояса следует предусматривать дополнительное утепление стен для ликвидации

      «мостиков холода» .

      Устройство предварительно напряженных армированных поясов рассмотрено в .