Гравитационная постоянная – величина не постоянная. Чему равна гравитационная постоянная


История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

  • Дарвин (космический проект)
  • Коэффициент размножения на быстрых нейтронах

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    гравитационная постоянная - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Гравитационная постоянная - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Все попытки экспериментаторов по уменьшению погрешности измерений гравитационной постоянной Земли до сего времени сводились к нулю. Как было отмечено ранее, со времен Кавендиша точность измерения этой постоянной практически не увеличилась. За два с лишним столетия точность измерения не сдвинулась с места. Такую ситуацию можно назвать по аналогии с «ультрафиолетовой катастрофой» как «катастрофа гравитационной постоянной». Из ультрафиолетовой катастрофы выбрались с помощью квантов, а как выйти из катастрофы с гравитационной постоянной?

Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:

Где, g – ускорение свободного падения (g=9,78 м/с 2 – на экваторе; g=9,832 м/с 2 – на полюсах).

R – радиус Земли, м,

M – масса Земли, кг.

Стандартное значение ускорения свободного падения, принятое при построении систем единиц, равно: g=9,80665 . Отсюда усредненное значение G будет равно:

В соответствии с полученным G , уточним температуру из пропорции:

6,68·10 -11 ~х=1~4,392365689353438·10 12

Данная температура соответствует по шкале Цельсия 20,4 o .

Такой компромисс, я думаю, вполне мог бы удовлетворить две стороны: экспериментальную физику и комитет (КОДАТА), чтобы периодически не пересматривать и не изменять значение гравитационной постоянной для Земли.

Можно «законодательно» утвердить нынешнее значение гравитационной постоянной для Земли G=6,67408·10 -11 Нм 2 /кг 2 , но скорректировать стандартное значение g=9,80665, несколько уменьшив его значение.

Кроме того, если использовать среднюю температуру Земли, равную 14 o С, то гравитационная постоянная будет равна G=6,53748·10 -11 .

Итак, у нас имеются три значения, претендующих на пьедестал гравитационной постоянной G для планеты Земля: 1) 6,67408·10 -11 м³/(кг·с²) ; 2) 6,68·10 -11 м³/(кг·с²) ; 3) 6,53748·10 -11 м³/(кг·с²) .

Комитету КОДАТА остается вынести окончательный вердикт, какую из них утвердить как гравитационную постоянную Земли.

Мне могут возразить, если гравитационная постоянная зависит от температуры взаимодействующих тел, то силы притяжения днем и ночью, зимой и летом должны отличаться. Да, именно так и должно быть, с малыми телами. Но Земля огромный, быстро вращающийся шар, имеет громадный запас энергии. Отсюда, интегральное количество крафонов зимой и летом, днем и ночью, вылетающих из Земли, одинаково. Поэтому, ускорение свободного падения на одной широте остается всегда постоянным.

Если переместиться на Луну, где разность температур дневного и ночного полушарий сильно разнятся, то гравиметры должны зафиксировать разницу силы притяжения.

Related Posts

11 комментариев

    Только один вопрос к Вам:

    Или у Вас в постранстве энергия не в сфере распространяется?

    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.

    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»

    Только один вопрос к Вам:
    Если Вы уже начали говорить об энергии, то почему напрочь забыли о 4Пи перед R^2?!
    Или у Вас в постранстве энергия не в сфере распространяется?
    И если Вы уж решили перейти к температуре, то в точках центров масс, правильней конечно же изпускающих энергию, она же неизвестна (экспериментально же она никак не может быть подтверждена), соответственно, её ешё вычислить необходимо.
    Ну и самого осмысленного описания процесса гравитационного взаимодействия тел у Вас и в помине нет, какие то «красные фотоны (крафоны) прилетели в тело, принесли энергию, это понимаемо, но не даёт ответа на вопрос: «почему при этом оно должно начать двигаться (перемещаться) именно в ту сторону, с которой они прибыли, а не в противотоложную ей, то есть согласно приложенной силе (приданному от этих ваших крафонов импульсу энергии)?»
    ________________________________________________________
    Вместо одного заявленного вопроса оказалось три, но суть не в этом.
    1. Касаемо 4π. В формулах (9) и (10) R2 – это расстояние от тела (предмета) до центра Земли. Откуда здесь должна появиться 4π – не понятно.
    2. Что касается максимальной температура вещества в природе. Вы, очевидно, поленились открыть ссылку в конце статьи: «Гравитационная постоянная величина – переменная».
    3. Теперь относительно «осмысленного описания процесса гравитационного взаимодействия тел». Все осмыслено и описано. Относительно, в какую сторону летят эти самые крафоны, читаем статьи: « ». Солнечные фотоны стартуют с поверхности Светила без отдачи, с приобретением импульсов придачи. Фотон, в противовес материальному миру, не имеет инерции – его импульс возникает в момент отрыва от источника без отдачи!
    Явление отдачи наблюдается только в телах, когда под действием внутренних сил оно распадается на части, разлетающееся в противоположные стороны. Фотон не распадается на части, он не расстается со своим приобретенным импульсом до своего поглощения, поэтому для него выражение (3) будет справедливо.
    « » , и ч.2 .
    Цитата из 2-й части: «Крафоны из элементарного шарика вылетают спонтанно, по разным направлениям по нормали его поверхности. Притом, направлены они, в основном, в атмосферу, т.е. в более разреженный электромагнитный эфир (ЭМЭ) по сравнению с ЭМЭ вод Мирового океана. В принципе та же картина наблюдается и на материках».
    Уважаемые читатели, на тему: как возникает гравитация, и кто является ее переносчиком, читайте всю главу под названием: «Гравитация». Конечно, можно и выборочно, для этого кликайте по кнопке «Карта сайта» верхнего меню, расположенного над шапкой сайта.

    Добавление к предыдущему комментарию.

    12окт.2016г. На страницах электронного научно-практического журнала «Современные научные исследования и инновации» опубликована моя статья под названием: «Фотонно-квантовая гравитация». В статье изложена суть гравитации. Прочесть по ссылке:

    P.S. Алексей Вы правы, в данном журнале указанной статьи нет. Читай ниже мой комментарий.

    Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((

    «Что-то нет Вашей статьи в октябрьском номере «Современные научные исследования и инновации» ((»
    Статья: ГРАВИТАЦИЯ ЗЕМЛИ ФОТОННО-КВАНТОВАЯ ГРАВИТАЦИЯ переехала в другой журнал: «Scientific-Researches» №5(5), 2016, с. 79
    http://tsh-journal.com/wp-content/uploads/2016/11/VOL-1-No-5-5-2016.pdf

    05.01.2017. Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула

    «Не затруднит ли Вас подробнее показать Ваши вычисления массы и радиуса Земли используемые в проверочной формуле G (9) для Земли. Не опасаетесь ли Вы некоей физической тавтологии используя эти величины ВЫЧИСЛЕННЫЕ с теми же константами? Микула»
    ———————————
    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    Да уж куда подробнее. В формуле 9 вычислены два крайние значения G для ускорения свободного падения (g=9,78 м/с2 – на экваторе; g=9,832 м/с2 – на полюсах). Для стандартного значения ускорения свободного падения выполнено в 10. Что касается массы и радиуса Земли, то они практически не изменятся. В чем тавтология, я не вижу.

    «Все тела, обладающие массой, возбуждают в окружающем пространстве гравитационные поля, подобно тому, как электрически заряженные частицы образуют вокруг себя электростатическое поле. Можно предположить, что тела несут в себе гравитационный заряд, аналогичный электрическому, или, по-другому, обладают гравитационной массой. С высокой точностью было установлено, что инертная и гравитационная массы совпадают.
    2
    Пусть имеется два точечных тела массами m1 и m2. Они удалены друг от друга на расстояние r. Тогда сила гравитационного притяжения между ними равна: F=C·m1·m2/r², где С – коэффициент, который зависит лишь от выбранных единиц измерения.

    3
    Если на поверхности Земли имеется небольшое тело, его размерами и массой можно пренебречь, т.к. габариты Земли намного превосходят их. При определении расстояния между планетой и поверхностным телом рассматривается только радиус Земли, т.к. высота расположения тела пренебрежимо мала в сравнении с ним. Получается, что Земля притягивает тело с силой F=M/R², где M – масса Земли, R – ее радиус.
    4
    Согласно закону всемирного тяготения, ускорение тел при действии силы тяжести на поверхности Земли равно: g=G M/ R². Здесь G – гравитационная постоянная, численно равная примерно 6,6742 10^(−11).
    5
    Ускорение свободного падения g и радиус земли R находятся из непосредственных измерений. Константа G с большой точностью определена в опытах Кэвендиша и Йолли. Итак, масса Земли M=5,976 10^27 г ≈ 6 10^27 г.

    фТавтология, на мой взгляд, разумеется ошибочный, заключается в том, что при вычислении массы Земли используется все тот же коэффициент G Кавендиша Йолли под названием гравитационная постоянная, которая совсем даже не постоянная, в чем я с Вами абсолютно согласен. Поэтому Ваш посыл «Из крутильных весов Кавендиша уже ничего не выжмешь, поэтому выход можно найти, воспользовавшись усредненным значением ускорения свободного падения и вычислить G из известной формулы:» не совсем корректен. Ваш расчет константы G уже использован в расчете массы Земли. Ни в коей мере не хочу Вас укорить, просто очень хочу разобраться с этой гравитационной постоянной, которой в законе Роберта Гука присвоенного Ньютоном совсем даже не было. С глубоким уважением Микула.

    Уважаемый, Микула, Ваше желание понять и разобраться с гравитационной постоянной похвально. Учитывая, что понять данную константу желали многие ученые, но не многим удалось это сделать.
    «Константа G с большой точностью определена в опытах Кавендиша и Йолли».
    Нет! С не большой! Иначе, зачем бы наука тратила средства и время для ее регулярной перепроверки и уточнения, т.е. усреднения результатов, чем и занимается КОДАТА. А нужна она как раз для того чтобы «взвесить Землю» и узнать ее плотность, чем и прославился Кавендиш. Но как видите, G гуляет от одного опыта к другому. Тоже самое и с ускорением свободного падения.
    Гравитационная постоянная – это коэффициент для одного значения температуры, а температура, что дышло.
    Что предлагаю я? Для планеты Земля раз и навсегда установить одно значение G и сделать ее действительно постоянной c учетом g.
    Не поленитесь, прочтите все статьи в рубрике G (гравитационная постоянная), думаю, у Вас многое прояснится. Начните сначала:

    Путь Наш во мраке… И стукаемся Мы лбами не только об осклизлые стены подземелья в поисках проблесков к выходу, но и об лбы таких же несчастных, матерясь и проклиная… хромые, безрукие, слепые нищие … И не слышим друг друга. Протягиваем руку и получаем в неё плевок… и потому бесконечен Наш путь… И тем не менее… вот моя рука. Это моя версия понимания природы гравитации… и «сильного взаимодействия».
    Мезенцев Николай Фёдорович.

    Ваша рука, к сожалению, мне никак не помогла, а собственно зачем.

Этот сайт использует Akismet для борьбы со спамом. .


Ваш комментарий на модерации.

m 1 и m 2 , находящимися на расстоянии r , равна: F = G m 1 m 2 r 2 . {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}.} G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Гравитационная постоянная является одной из основных единиц измерения в планковской системе единиц .

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено [ ] .

G = 6,67554(16) × 10 −11 м 3 ·с −2 ·кг −1 (стандартная относительная погрешность 25 ppm (или 0,0025 %), первоначальное опубликованное значение несколько отличалось от окончательного из-за ошибки в расчётах и было позже исправлено авторами) .

См. также

Примечания

  1. В общей теории относительности обозначения, использующие букву G , применяются редко, поскольку там эта буква обычно используется для обозначения тензора Эйнштейна.
  2. По определению массы, входящие в это уравнение, - гравитационные массы , однако расхождения между величиной гравитационной и инертной массы какого-либо тела до сих пор не обнаружено экспериментально. Теоретически в рамках современных представлений они вряд ли отличаются. Это в целом было стандартным предположением и со времен Ньютона.
  3. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию // Элементы.ру , 13.09.2013
  4. CODATA Internationally recommended values of the Fundamental Physical Constants (англ.) . Проверено 30 июня 2015.
  5. Разные авторы указывают разный результат, от 6,754⋅10 −11 м²/кг² до (6,60 ± 0,04)⋅10 −11 м³/(кг·с³) - см. Эксперимент Кавендиша#Вычисленное значение .
  6. Игорь Иванов. Новые измерения гравитационной постоянной ещё сильнее запутывают ситуацию (неопр.) (13 сентября 2013). Проверено 14 сентября 2013.
  7. Так ли постоянна гравитационная постоянная? Архивная копия от 14 июля 2014 на Wayback Machine Новости науки на портале cnews.ru // публикация от 26.09.2002
  8. Brooks, Michael Can Earth"s magnetic field sway gravity? (неопр.) . NewScientist (21 September 2002). [Архивная копия на Wayback Machine Архивировано] 8 февраля 2011 года.
  9. Ерошенко Ю. Н. Новости физики в сети Internet (по материалам электронных препринтов) , УФН , 2000 г., т. 170, № 6, с. 680
  10. Phys. Rev. Lett. 105 110801 (2010) в ArXiv.org
  11. Новости физики за октябрь 2010
  12. Quinn Terry , Parks Harold , Speake Clive , Davis Richard. Improved Determination of G Using Two Methods (англ.) // Physical Review Letters. - 2013. - 5 September (vol. 111 , no. 10 ). - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.111.101102 .
  13. Quinn Terry , Speake Clive , Parks Harold , Davis Richard. Erratum: Improved Determination of G Using Two Methods (англ.) // Physical Review Letters. - 2014. - 15 July (vol. 113 , no. 3 ). - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.113.039901 .
  14. Rosi G. , Sorrentino F. , Cacciapuoti L. , Prevedelli M. , Tino G. M.

Ученые из России и Китая уточнили гравитационную постоянную, используя два независимых метода. Результаты исследования опубликованы в журнале Nature.

Гравитационная постоянная G - одна из фундаментальных констант в физике, которую применяют при расчетах гравитационного взаимодействия материальных тел. Согласно закону всемирного тяготения Ньютона, гравитационное взаимодействие двух материальных точек пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Также в эту формулу входит постоянный коэффициент - гравитационная постоянная G. Массы и расстояния астрономы сейчас могут измерять значительно точнее, чем гравитационную постоянную, из-за чего у всех расчетов тяготения между телами накапливалась систематическая погрешность. Предположительно, связанная с гравитационной постоянной погрешность влияет и на исследования взаимодействий атомов или элементарных частиц.

Физики неоднократно измеряли эту величину. В новой работе международный коллектив ученых, в состав которого вошли сотрудники Государственного астрономического института имени П.К. Штернберга (ГАИШ) МГУ, решил уточнить гравитационную постоянную, используя два метода и крутильный маятник.

«В эксперименте по измерению гравитационной постоянной требуется произвести абсолютные измерения трех физических величин: массы, длины и времени, - комментирует один из авторов исследования, Вадим Милюков из ГАИШ. - Абсолютные измерения всегда могут быть отягощены систематическими ошибками, поэтому было важным получить два независимых результата. Если они совпадают между собой, то появляется уверенность, что они свободны от систематики. Наши результаты совпадают между собой на уровне трех стандартных отклонений».

Первый использованный авторами исследования подход - так называемый динамический метод (time-of-swing method, ToS). Исследователи вычисляли, как изменяется частота крутильных колебаний в зависимости от положения двух пробных тел, которые служили источниками масс. Если расстояние между пробными телами уменьшается, сила их взаимодействия увеличивается, что вытекает из формулы для гравитационного взаимодействия. В результате возрастает частота колебаний маятника.

Схема экспериментальной установки с крутильным маятником

Q. Li, C.Xie, J.-P. Liu et al.

Используя этот метод, исследователи учли вклад упругих свойств нити подвеса маятника в погрешности измерения и постарались сгладить их. Эксперименты проводились на двух независимых аппаратах, находящихся на расстоянии 150 м друг от друга. На первом ученые протестировали три различных вида волокна нити подвеса, чтобы проверить возможные ошибки, наведенные материалом. У второго значительно изменили конструкцию: исследователи использовали новое силикатное волокно, другой набор маятников и грузов для того, чтобы оценить ошибки, которые зависят от установки.

Второй метод, которым измеряли G, - метод компенсации угловых ускорений (Angular acceleration feedback, AAF). В нем измеряется не частота колебаний, а угловое ускорение маятника, вызванное пробными телами. Этот метод измерения G не нов, однако для того, чтобы увеличить точность вычисления, ученые кардинально изменили конструкцию экспериментальной установки: заменили алюминиевую подставку на стеклянную, чтобы материал не расширялся при нагревании. В качестве пробных масс использовали тщательно отшлифованные сферы из нержавеющей стали, близкие по форме и однородности к идеальным.

Чтобы снизить роль человеческого фактора, практически все параметры ученые измерили повторно. Также они подробно исследовали влияние температуры и вибраций при вращении на расстояние между пробными телами.

Полученные в результате экспериментов значения гравитационной постоянной (AAF - 6,674484(78)×10 -11 м 3 кг -1 с -2 ; ToS - 6,674184(78)×10 -11 м 3 кг -1 с -2) совпадают между собой на уровне трех стандартных отклонений. Кроме того, оба имеют наименьшую неопределенность из всех ранее установленных значений и согласуются со значением, которое рекомендовано Комитетом данных для науки и техники (CODATA) в 2014 году. Эти исследования, во-первых, дали большой вклад в определение гравитационной постоянной, а во-вторых, показали, какие усилия потребуются в будущем для того, чтобы достичь еще большей точности.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@сайт.