Домашняя сигнализация или использование датчика движения и LCD монитора с Arduino. Бюджетная GSM сигнализация с мозгами из Arduino Охранная сигнализация на arduino mega 2560


Доброе время суток 🙂 Сегодня поговорим о сигнализации. На рынке услуг полно фирм, организацией, которые занимаются установкой и обслуживанием охранных систем. Эти фирмы предлагают покупателю широкий выбор сигнализацией. Однако их стоимость далеко не копеечная. Но что же делать человеку, у которого не так уж и много личных средств, что можно потратить на охранную сигнализацию? Думаю, вывод напрашивается сам собой – сделать сигнализацию своими руками . В этой статье приведён пример того, как можно сделать свою собственную кодовую охранную систему используя плату Arduino uno и несколько магнитных датчиков.

Систему можно дезактивировать вводом пароля с клавиатуры и нажатием кнопки ‘* ‘. Если хотите изменить текущий пароль, можете сделать это нажав на клавишу ‘B ‘, а если хотите пропустить или прервать операцию, можете сделать это нажав на клавишу ‘#’. В системе есть зуммер для воспроизведения различных звуков при выполнении той либо иной операции.

Активируется система нажатием кнопки ‘A’. Система даёт 10 секунд на то, чтобы покинуть помещение. После прошествии 10 секунд сигнализация будет активирована. Количество магнитных датчиков будет зависит от вашего собственного желания. В проекте задействованы 3 датчика (для двух окон и двери). Когда окно открывается система активируется, и включается сигнал тревоги идущий с зуммера. Систему можно дезактивировать путем набора пароля. Когда открывается дверь, сигнализация даёт вошедшему 20 секунд для ввода пароля. Система использует ультразвуковой датчик, что может обнаруживать движение.

Видео работы устройства

Поделка изготовлена в ознакомительных/обучающих целях. Если хотите использовать её у себя дома, будет необходимо её доработать. Заключить управляющий блок в металлический корпус и обезопасить линию питания от возможного повреждения.

Давайте начинать!

Шаг 1: Что нам будет нужно

  • плата Arduino uno;
  • высококонтрастный LCD дисплей 16×2;
  • клавиатура 4×4;
  • 10~20кОм потенциометр;
  • 3 магнитных датчика (они же герконы);
  • 3 2-х пиновых винтовых клеммы;
  • HC-SR04 ультразвуковой датчик;

Если вы хотите собрать систему без использования Arduino, вам также потребуется следующее:

  • DIP разъём для atmega328 + микроконтроллер atmega328;
  • 16MГц кварцевый резонатор;
  • 2 шт. 22pF керамических, 2 шт. 0.22uF электролитических конденсатора;
  • 1 шт. 10кОм резистор;
  • гнездо под питание (DC power jack);
  • макетная плата;
  • 5В блок питания;

И одна коробка, чтобы всё это упаковать!

Инструменты:

  • Что-то, чем можно разрезать пластиковую коробку;
  • Термоклеевой пистолет;
  • Дрель/шуруповерт.

Шаг 2: Схема сигнализации

Схема соединения довольно простая.

Небольшое уточнение:

Высококонтрастный LCD:

  • Pin1 — Vdd к GND;
  • Pin2 — Vss к 5В;
  • Pin3 — Vo (к центральному выводу потенциометра);
  • Pin4 — RS к 8 выводу Arduino;
  • Pin5 — RW к GND;
  • Pin6 — EN к 7 выводу Arduino;
  • Pin11 — D4 к 6 выводу Arduino;
  • Pin12 — D5 к 5 выводу Arduino;
  • Pin13 — D6 к 4 выводу Arduino;
  • Pin14 — D7 к 3 выводу Arduino;
  • Pin15 — Vee (к правому или левому выводу потенциометра) .

Клавиатура 4×4:

От левого к правому:

  • Pin1 к A5 выводу Arduino;
  • Pin2 к A4 выводу Arduino;
  • Pin3 к A3 выводу Arduino;
  • Pin4 к A2 выводу Arduino;
  • Pin5 к 13 выводу Arduino;
  • Pin6 к 12 выводу Arduino;
  • Pin7 к 11 выводу Arduino;
  • Pin8 к 10 выводу Arduino.

Шаг 3: Прошивка

В шаге представлен код, что используется встроенным !

Скачайте плагин codebender. Нажмите на кнопку «Run» в Arduino и прошейте свою плату этой программой. На этом всё. Вы только что запрограммировали Arduino! Если хотите внести изменения в код, нажмите кнопку»Edit».

Примечание: Если вы не будете использовать Codebender IDE для программирования платы Arduino, вам будет нужно установить дополнительные библиотеки в Arduino IDE.

Шаг 4: Изготавливаем собственную управляющую плату

После того, как удачно собрали и протестировали новый проект на базе Arduino uno, можете начать изготовление собственной платы.

Несколько советов, для более успешного завершения затеянного:

  • 10кОм резистор должен монтироваться между 1 (reset) и 7 (Vcc) выводами микроконтроллера Atmega328.
  • 16MГц кварцевый резонатор должен подсоединятся к выводам 9 и 10, отмеченными, как XTAL1 и XTAL2
  • Соедините каждый вывод резонатора с 22pF конденсаторами. Свободные выводы конденсаторов заведите на 8 вывод (GND) микроконтроллера.
  • Не забудьте соединить вторую линию питания ATmega328 с блоком питания, выводы 20-Vcc и 22-GND.
  • Дополнительную информацию по выводам микроконтроллера можете найти на втором изображении.
  • Если планируете использовать блок питания с напряжением выше 6В, необходимо воспользоваться линейный регулятором LM7805 и двумя 0.22uF электролитическими конденсаторами, которые следует смонтировать на входе и выходе регулятора. Это важно! Не подавайте больше, чем 6В на плату!!! В противном случае вы спалите свой микроконтроллер Atmega и LCD дисплей.

Шаг 5: Размещаем схему в корпусе

Здравствуй, дорогой читатель! Сегодняшняя статья посвящена созданию простой домашней системы безопасности, при помощи доступных компонентов. Это маленькое и дешёвое устройство поможет тебе защитить ваше жилище от проникновения при помощи Arduino, датчика движения, дисплея и динамика. Питаться устройство сможет от батарейки или USB-порта компьютера.

Итак, начнём!

Как оно работает?

Тела теплокровных излучают в ИК-диапазоне, который невидим для человеческих глаз, однако может быть обнаружен при помощи датчиков. Такие датчики делаются из материала, который под воздействием тепла может спонтанно поляризоваться, благодаря чему это позволяет определить появления источников тепла в радиусе действия датчика.

Для более широкого радиуса действия используют линзы Френеля, которые собирают ИК-излучение с разных направлений и концентрируют его на самом датчике.

На рисунке видно, как линза искажает лучи, которые падают на неё.

Стоит отметить, что роботы без особо греющихся частей и хладнокровные излучают в ИК-диапазоне очень слабо, поэтому датчик может не сработать в случае, если тебя решат обнести сотрудники Boston Dynamics или рептилоиды.

Когда происходит изменение уровня ИК излучения в диапазоне действия, это будет обрабатываться на Arduino после чего на LCD дисплее будет выводится статус, светодиод будет мигать, а спикер пищать.

Что нам потребуется?

  1. (или любая другая плата ).
  2. (16 символов по две строки)
  3. Один разъём для подключения кроны к Arduino
  4. (хотя можно использовать и обычный динамик)
  5. USB-кабель - только для программирования (прим. пер.: с нашими Arduino он всегда идёт в комплекте!)
  6. Компьютер (опять же только для того, чтобы написать и загрузить программу).

Кстати, если не хочется покупать все эти детали по отдельности - рекомендуем обратить внимание на наши . К примеру, всё необходимое и даже больше есть в нашем стартовом наборе .

Подключаем!

Подключение датчика движения очень простое:

  1. Пин Vcc подключаем к 5V Ардуино.
  2. Пин Gnd подключаем к GND Ардуино.
  3. Пин OUT подключаем к цифровому пину №7 от Arduino

Теперь присоединим светодиод и спикер. Тут всё так же просто:

  1. Короткую ножку (минус) светодиода подключаем к земле
  2. Длинную ножку (плюс) светодиода подключаем к выходу №13 Arduino
  3. Красный провод спикера к выходу №10
  4. Чёрный провод – к земле

И теперь самое сложное – подключение LCD дисплея 1602 к Arduino. Дисплей у нас без I2C, поэтому потребуется много выходов Arduino, но результат будет того стоить. Схема представлена ниже:

Нам нужна только часть схемы (у нас не будет регулировки контраста потенциометром). Поэтому требуется сделать лишь следующие:

Теперь ты знаешь, как подключить дисплей 1602 к Arduino UNO R3 (ровно как и к любой версии Arduino от Mini до Mega).

Программируем

Пришло время перейти к программированию. Ниже представлен код, который надо лишь залить и, если вы собрали всё верно – устройство готово!

#include int ledPin = 13; // Пин светодиода int inputPin = 7; // Пин, к которому подключен Out датчика движения int pirState = LOW; // Текущее состояние (в начале ничего не обнаружено) int val = 0; // Переменная для чтения состояния цифровых входов int pinSpeaker = 10; // Пин, к которому подключен динамик. Требуется использовать пин с ШИМ (PWM) LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Инициалиация LCD дисплея void setup() { // Определение направления передачи данных на цифровых пинах pinMode(ledPin, OUTPUT); pinMode(inputPin, INPUT); pinMode(pinSpeaker, OUTPUT); // Запуск вывода отладочной информации через последовательный порт Serial.begin(9600); // Запуск вывода на LCD дисплей lcd.begin(16, 2); // Устанавливаем индекс на дисплеи, с которого начнём вывод // (2 символ, 0 строки) lcd.setCursor(2, 0); // Вывод на LCD дисплей lcd.print("P.I.R Motion"); // Снова перемещаем lcd.setCursor(5, 1); // Выводим lcd.print("Sensor"); // Пауза, чтобы успели прочитать, что вывели delay(5000); // Очистка lcd.clear(); // Аналогично lcd.setCursor(0, 0); lcd.print("Processing Data."); delay(3000); lcd.clear(); lcd.setCursor(3, 0); lcd.print("Waiting For"); lcd.setCursor(3, 1); lcd.print("Motion...."); } void loop() { // Считываем показание датчика val = digitalRead(inputPin); if (val == HIGH) { // Если есть движение, то зажигаем светодиод и включаем сирену digitalWrite(ledPin, HIGH); playTone(300, 300); delay(150); // Если движения до данного момента не было, то выводим сообщение // что оно обнаружено // Код ниже нужен для того, чтобы писать лишь смену состояния, а не каждый раз выводить значение if (pirState == LOW) { Serial.println("Motion detected!"); lcd.clear(); lcd.setCursor(0, 0); lcd.print("Motion Detected!"); pirState = HIGH; } } else { // Если движене закончилось digitalWrite(ledPin, LOW); playTone(0, 0); delay(300); if (pirState == HIGH){ // Сообщаем, что движение было, но уже закончилось Serial.println("Motion ended!"); lcd.clear(); lcd.setCursor(3, 0); lcd.print("Waiting For"); lcd.setCursor(3, 1); lcd.print("Motion...."); pirState = LOW; } } } // Функция воспроизведения звука. Duration (длительность)- в миллисекундах, Freq (частота) - в Гц void playTone(long duration, int freq) { duration *= 1000; int period = (1.0 / freq) * 100000; long elapsed_time = 0; while (elapsed_time < duration) { digitalWrite(pinSpeaker,HIGH); delayMicroseconds(period / 2); digitalWrite(pinSpeaker, LOW); delayMicroseconds(period / 2); elapsed_time += (period); } }

Являются специальными аппаратными платформами, на основе которых можно создавать различные электронные устройства, включая и . Устройства этого типа отличаются простой конструкцией и возможностью программирования алгоритмов их работы. Благодаря этому, созданная с помощью Arduino GSM сигнализация, может максимально настраиваться под объект, который она будет охранять.

Что собой представляет модуль Arduino?

Arduino реализуются в виде небольших плат, которые имеют собственный микропроцессор и память. На плате также располагается набор функциональных контактов, к которым можно подключать различные электрифицированные устройства, включая и датчики, используемые для охранных систем.

Процессор Arduino позволяет загружать в себя программу, написанную пользователем самостоятельно. Создавая собственный уникальный алгоритм, можно обеспечивать оптимальные режимы работы охранных сигнализаций для разных объектов и для разных условий использования и решаемых задач.

Сложно ли работать с Arduino?

Модули Arduino отличаются высокой популярностью среди многих пользователей. Это стало возможным благодаря своей простоте и доступности.

Программы для управления модулями пишутся с использованием обычного C++ и дополнений в виде простых функций управления процессами ввода/вывода на контактах модуля. Кроме этого, для программирования может применяться и бесплатная программная среда Arduino IDE, функционирующая под Windows, Linux или Mac OS.

С модулями Arduino существенно упрощена процедура сборки устройств. GSM сигнализация на Ардуино может создаваться без потребности в паяльнике – сборка происходит с использованием макетной доски, перемычек и проводов.

Как создать сигнализацию с помощью Arduino?

К основным требованиям, которым должна отвечать созданная gsm сигнализация на Ардуино своими руками относятся:

  • оповещать владельца объекта о взломе или проникновении;
  • поддержке внешних систем типа звуковая сирена, сигнальные фонари;
  • управление сигнализацией через СМС или звонок;
  • автономная работа без внешнего питания.

Для создания сигнализации потребуется:

  • модуль Arduino;
  • набор функциональных датчиков;
  • или модем;
  • источник автономного питания;
  • внешние исполнительные устройства.

Отличительной особенностью модулей Ардуино является использование специальных плат расширения. С их помощью осуществляется подключение всех дополнительных устройств к Arduino, которые требуются для сборки конфигурации охранной системы. Такие платы устанавливаются поверх модуля Ардуино в виде «бутерброда», а уже к самим платам подключаются соответствующие вспомогательные устройства.

Как это работает?

При срабатывании одного из подключенных датчиков происходит передача сигнала к процессору модуля Arduino. Используя загруженный пользовательский софт, микропроцессор производит его обработку по определенному алгоритму. В результате этого может формироваться команда на срабатывание внешнего исполнительного устройства, которая передается к нему через соответствующую плату расширения-сопряжения.

Чтобы обеспечить возможность оправки предупредительных сигналов владельцу дома или квартиры, которые охраняются, к модулю Arduino, через плату расширения, подключается специальный модуль GSM. В него устанавливается SIM-карта одного из провайдеров сотовой связи.

При отсутствии специального GSM-адаптера его роль может выполнять и обычный мобильный телефон. Кроме отправки СМС-сообщений с предупреждением о тревоге и дозвона, наличие сотовой связи позволит управлять GSM сигнализацией на Ардуино дистанционно, а также контролировать состояние объекта, отправляя специальные запросы.

«Обратите внимание!

Для связи с владельцем объекта, кроме GSM-модулей могут использоваться и обычные модемы, которые обеспечивают связь через интернет.»

В таком случае, когда срабатывает датчик, обработанный процессором сигнал, передается через модем на специальный портал или сайт. А уже из сайта осуществляется автоматическое генерирование предупредительной СМС или рассылки на привязанный e-mail.

Выводы

Использование модулей Arduino позволит пользователям самостоятельно проектировать GSM-сигнализации, которые могут работать с разно функциональными датчиками и управлять внешними устройствами. Благодаря возможности применения различных датчиков функции сигнализации можно существенно расширить и создать комплекс, который будет следить не только за безопасностью объекта, а и за его состоянием. Например, можно будет контролировать температуру на объекте, фиксировать утечку воды и газа, перекрывать их подачу в случае аварии и многое другое.

GSM сигнализация на Arduino

В этой статье вы узнаете как (купить) сделать самому GSM сигнализацию с помощью GSM модуля и Arduino очень дешево. Обьектом охраны GSM сигнализации идеально подойдет дача, дом, гараж, квартира.


Шаг 1: Элементы
Для этого проекта вам понадобится:


GSM Shield

Зуммер
Сирена сигнализации 12V
12V источник питания

Клавиатура для Arduino
Корпус.

Шаг 2: Подключение компонентов


Сначала вы поместите GSM модуль на Arduino Uno, вам нужно будет припаять провода GND и VCC вместе с двумя датчиками, зуммером и входом модуля реле. После этого соединить эти припаяные провода на соответствующий разъем GSM шилда. Далее вы будете делать разъем ввода / вывода сигналов из этих частей, и последнее, что нужно будет - это подключить клавиатуру

Arduino Uno / GSM Клеммы:

Вывод 0: не связанный;
Вывод 1: не связанный;
Вывод 2: несвязанный (GSM будет использовать этот штырь);
Вывод 3: несвязанный (GSM будет использовать этот штырь);
Вывод 4: последняя строка с помощью клавиатуры (контакт клавиатуры 4 - от 8);
Вывод 5: не связанный;
Вывод 6: второй столбец с помощью клавиатуры (контакт клавиатуры 6 - с 8);
Вывод 7: третья колонка с клавиатуры (клавиатуры пальца 7 - от 8);
Вывод 8: несвязанный (GSM будет использовать этот штырь);
Вывод 9: несвязанный (GSM будет использовать этот штырь);
Вывод 10: данные PIR датчика № 2;
Вывод 11: сирена звуковой сигнал (поступает на вход модуля реле);
Вывод 12: данные PIR датчика № 1;
Вывод 13: входной сигнал зуммера;

Как можно видеть, хотя клавиатура имеет 8 выводов, подключились только три (одна строка и две колонки, что позволяет использовать два числа для чтения - 1 × 2 матрицы), таким образом я могу сделать пароли, используя эти три провода, и нет необходимости использовать все контакты с клавиатуры. Это происходит потому, что после того, как датчик движения обнаруживает человека, идущего в комнате, человек будет иметь всего 5 секунд, чтобы отключить сигнализацию. После того, как аварийный сигнал не отключается на данный момент времени, GSM шилд отправляет SMS вам, или звонит на номер телефона. Arduino был запрограммирован на вызов и как только вы ответить на телефонный звонок, он положит трубку.

Конечно, можно получить ложные показания датчика, поэтому стоит опция, чтобы отключить сигнализацию, просто отправив СМС с вашего телефона на Arduino. Кроме того, еще один вариант, что вы можете сделать, это настроить шилд, чтобы он отправлял вам одно сообщение в день, чтобы вы знали, что он работает правильно.

Шаг 3: Код

Просто загрузите приведенный ниже код и скомпилируйте. Он использует библиотеки Keypad.h и GSM.h.
Скачать файл: (cкачиваний: 181)
Скачать файл: (cкачиваний: 104)

Шаг 4: Заключение


Учитывая, что код Arduino Uno будет отправлять SMS-сообщения и звонить на ваш телефон всего за пять секунд после того, как кто-то проникнуть в ваш дом, я предполагаю, что у вас будет достаточно времени, чтобы позвонить в полицию. Конечно сирена будет отпугивать воров и ваш дом или другое помещение станет безопаснее с помощью этой статьи.