Исполнение насоса шгн по конструкции цилиндра. Штанговые глубинные насосы


Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

· обладают высоким коэффициентом полезного действия;

· проведение ремонта возможно непосредственно на промыслах;

· для первичных двигателей могут быть использованы различные приводы;

· установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

· ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);

· малая подача насоса;

· ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.



Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Автоматизированные групповые замерные установки (АГЗУ)

АГЗУ - Автоматизированная Групповая Замерная Установка - блок учета для автоматического определения дебитов нефтяных скважин.

Автоматизированные групповые замерные установки применяются в следующих областях: напорные системы сбора продукции нефтяных скважин и автоматизированные системы управления технологическими процессами нефтедобычи.

Установка состоит из двух блоков: технологического и аппаратурного. В технологическом блоке размещены:

· замерный сепаратор (ёмкость сепарационная);

· переключатель скважин многоходовый ПСМ;

· счетчик жидкости;

· регулятор расхода;

· привод гидравлический;

· запорная арматура;

· блок гидропривода;

В аппаратурном блоке размещены:

· блок управления;

· блок индикации;

· блок питания.

Принцип работы. Продукция скважин по трубопроводам, подключенным к установке, поступает в переключатель скважин многоходовой ПСМ. При помощи переключателя ПСМ продукция одной из скважин направляется в сепаратор, а продукция остальных скважин направляется в общий трубопровод. В сепараторе происходит отделение газа от жидкости. Выделившийся газ поступает в общий трубопровод (через датчик расхода газа), а жидкость накапливается в нижней емкости сепаратора. С помощью регулятора расхода и заслонки, соединенной с поплавковым уровнемером, обеспечивается циклическое прохождение накопившейся жидкости через счетчик с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне. Управление переключением скважин осуществляется блоком управления по установленной программе или оператором.

Экскурсии

27 июня 2015 года мы под руководством Зиганшина С.С. отправились в Альметьевск на учебную буровую . Там проводились соревнования между несколькими буровыми бригадами.



6 июля 2015 года мы пошли в лабораторию ООО "Башнефть-Петротест". Там занимаются анализированием нефти на состав, плотность и другие параметры. Об этом нам подробно рассказала Наталья Викторовна. Также нам рассказали об основных экологических проблемах в нефтегазовой отрасли и об их решениях.

7 июля 2015 года мы поехали на куст № 1262 НГДУ "Туймазынефть", который находится в 25-м микрорайоне (недалеко от сероводородной лечебницы). Там нас встретил оператор 5-го разряда Тронтов А.В. Он же вместе с нашим руководителем Зиганшиным С.С. рассказали об устройстве и принципе работы ШГН, об основных обязанностях оператора.


Тронтов А.В. и Зиганшин С.С. объясняют принцип работы ШГН



9 июля 2015 года мы были в Производственном управлении "Обустройство и обслуживание месторождений" Таргин Механосервис (Октябрьский цех), находящийся по адресу ул. Северная 2. Там нас встретил директор Халиков Азат Венерович. Данное предприятие занимается ремонтом нефтепромысловых устройств (бурильные насосы, такой как мультифазный насос, ШГН, ЭЦН и др.). Предприятие производит ремонт как с выездом на месторождение, так и у себя в цеху.

Экскурсию вел механик, недавно выпустившийся студент, Михаил.





Вел экскурсию буровой мастер Валиуллин Айдар Фаритович. Там нам рассказали о процессе бурения скважины, подачи воды в скважину для очистки ее от бурового шлама.




На этом и закончились наши экскурсии.

Заключение

Во время учебной практики мы побывали на экскурсиях под руководительством Зиганшина С.С. Он рассказывал нам очень много и подробно о работе бурильщиков, о принципах работы буровых насосов, штанговых глубинных насосов, автоматизированных групповых замерных установок, о правилах техники безопасности на буровой. За время практики мы узнали много нового не только о принципах работы тех или иных установок, но и о тяжелом труде нефтяника.

Список использованной литературы и материалов

1) Разработка месторождений природных газов: Учебное пособие для вузов. 2011;

2)Федеральные нормы и правила в области промышленной безопасности «правила безопасности. Правила безопасности в нефтяной и газовой промышленности. ПБ 08-624-03, Госгортехнадзор России, 2015;

3) Инструкция по бурению наклонно-направленных скважин с кустовых площадок на нефтяных месторождениях Западной Сибири. РД 39-0148070-6.027-86;
4) Конторович А.Э., Нестеров И.И., Салманов Ф.К., и др. Геология нефти и газа Западной Сибири. -М.: Недра. – 2010. – 680 с.;
5) Основы технологии бурения скважин, учебное пособие, Дмитриев А.Ю.;

6) Справочник бурильщика, Ю.В.Вадецкий, 2008, Москва, Издательский центр "Академия";

7) Интернет источник, http://gazovikoil.ru/index.php?id=253, дата обращения 4 августа 2015 год;

8) Интернет источник, http://vseonefti.ru/upstream/shtangovyi-nasos.html, дата обращения 4 августа 2015 год.

Вызов на практику (гарантийное письмо).

Директору филиала ФГБОУ ВПО

"УГНТУ" в г. Октябрьском

профессору В.Ш. Мухаметшину

Уважаемый Вячеслав Шарифуллович, нефтяная компания ОАО Сургутнефтегаз гарантирует прохождение производственной практики студента 2 курса Герасимова Льва Сергеевича по специальности "Эксплуатация и обслуживание объектов добычи нефти и газа" сроком с 29 июня по 1 августа. Предприятие гарантирует оплачиваемую практику, а также проживание в общежитии.

Генеральный директор предприятия: (ФИО)

(Подпись)

Резюме
Герасимов Лев Сергеевич

Место жительство (регистрация): РФ, Республика Башкортостан,

район Белебеевский, р.п.Приютово, ул. Свердлова, дом 13, кв. 32

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

  • обладают высоким коэффициентом полезного действия;
  • проведение ремонта возможно непосредственно на промыслах;
  • для первичных двигателей могут быть использованы различные приводы;
  • установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

  • ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);
  • малая подача насоса;
  • ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.

Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Штанговые насосы бывают вставные (НСВ) и невставные (НСН) .

Вставные штанговые насосы спускают в скважину в собранном виде. Предварительно в скважину на НКТ спускается специальное замковое приспособление, а насос на штангах спускают в уже спущенные НКТ. Соответственно для смены такого насоса не требуется лишний раз производить спуск-подъем труб.

Невставные насосы спускаются в полуразобранном виде. Сначала на НКТ спускают цилиндр насоса. А затем на штангах спускают плунжер с обратным клапаном. Поэтому при необходимости замены такого насоса приходится поднимать из скважины сначала плунжер на штангах, а потом и НКТ с цилиндром.

И тот и другой вид насоса имеет как свои преимущества, так и недостатки. Для каждых конкретных условий применяют наиболее подходящий тип. Например, при условии содержания в нефти большого количества парафина предпочтительно применение невставных насосов. Парафин, откладываясь на стенках НКТ, может заблокировать возможность поднятия плунжера вставного насоса. Для глубоких скважин предпочтительнее использовать вставной насос, чтобы снизить затраты времени на спуск-подъем НКТ при смене насоса.

Наиболее распространенный способ добычи нефти – применение штанговых скважинных насосных установок (УШГН). Насосы спускают на глубину от нескольких со­тен метров до 2000 метров (в отдельных случаях до 3000 м). В скважине, оборудован­ной УШГН, подача жидкости осущест­вляется глубинным плунжерным на­сосом, который приводится в действие с помощью специ­ального привода станка-качалки (СК) посредством ко­лонны штанг.

Оборудование УШГН включает:

Наземное оборудование:

· Оборудование устья;

· Станок-качалка.

Подземное оборудование:

· Насосные штанги;

· Штанговый скважинный насос;

· Различные защитные устройства (газовый или песочный якорь, фильтр и т.д.).

Принцип работы УШГН

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипно - шатунный механизм в целом преобразо­вывает в возвратно-поступательное движение балан­сира, который враща­ется на опорной оси, укреплённой на стойке. Ба­лансир сообщает воз­вратно-поступательное движение канатной под­веске, штангам и плунжеру. При ходе плунжера вверх нагнетатель­ный клапан под действием жидкости закрывается и вся жидкость, на­ходящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасы­вающий клапан заполняет цилиндр насоса. При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунже­ром сжима­ется, и открывается нагнетательный клапан. В цилиндр погру­жаются штанги, связанные с плунжером.

Таким образом, ШСН - поршневой насос однородного действия, а в це­лом комплекс из насоса и штанг - двойного действия.

В скважине, оборудованной УШГН, подача жидкости осуществляется глубинным плунжерным насо­сом, который приводится в действие с помо­щью специального привода СК посредством колонны штанг.

СК преобразует вращательное движение электродвигателя в воз­вратно-поступательное движение подвески штанг.

Краткая характеристика оборудования УШГН

2. Насосные штанги

Скважинные штанговые насосы (ОСТ 26-26-06-86) являются надеж­ным и экономичным эксплуатационным оборудованием нефтяных сква­жин, широко применяемых для отбора пластовой жидкости (смеси нефти, воды и газа).

Штанговые глубинные насосы (ШГН), применяются в скважинах:

· с дебитом от 5 до 150 м 3 /сут.;

· с глубиной спуска насоса до 2000м. и более;

· с кривизной ствола скважины до 8-10 (максимальное отклоне­ние от вертикали) при больших отклонениях по кривизне должны приме­няться специальные за­щитные приспособления для штанг и насоса;

· с газовым фактором до 150 м 3 /м 3 , при высоких газовых факто­рах применяются якоря (газосепара­торы);

Насосы разделяются на невставные (трубные) и вставные.

Невставные насосы.

Цилиндр спускается в скважину на насосных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружного диа­метра плунжера (примерно на 6 мм). Применение НСН целесообразно в скважи­нах с большим дебитом, не­большой глубиной спуска и большим межре­монтным периодом.

а - невставной насос с штоком типа НН-1; б - не­вставной насос с ло­вите­лем типа НН-2: 1 - нагнета­тельные клапаны; 2 – цилиндры; 3 – плун­жеры; 4 - патрубки-удлинители; 5 - всасывающие клапаны; 6 - седла кону­сов; 7 - захватный шток; 8 - второй нагнетательный клапан; 9 – ловитель; 10 - наконечник для захвата клапана; в - вставной насос типа НВ-1: 1 – штанга; 2 – НКТ; 3 - посадочный ко­нус; 4 - замковая опора; 5 – цилиндр; 6 – плун­жер; 7 - направляющая трубка.

Рисунок 2.8 – Сборочный чертёж невставного насоса

Вставные насосы.

Цилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса.

В НН-1(рис 2.3, а) всасывающий клапан 5 держится в седле конуса 6 и соединен с плунжером 3 специальным штоком 7. Это позволяет при подъеме штанг, следовательно, и плунжера сразу извлечь всасывающий клапан 5. Такая операция необходима не только для замены или ремонта

клапана, но и для спуска жидкости из насосных труб перед их подъемом.

В насосах НН-2 (рис 2.3, б) - два нагнетательных клапана. Это суще­ственно уменьшает (на объем плунжера) объем вредного пространства и повышает коэффициент наполнения при откачке газированной жидкости.

Вставные насосы НВ-1 имеют один или два клапана, размещенные в верхней и нижней части плунжера.

Насосные штанги.

Для передачи возвратно – поступательного движения от привода к плунжеру скважинного насоса используется колонна насосных штанг. Она собирается из отдельных штанг, соединенных муфтами.

Насосные штанги представляют собой стержни круглого поперечного сечения с высаженными концами, на которых располагается участок квадратного сечения и резьба.

Штанги выпускаются диаметрами 16, 19, 22, 26, а допускаемое напря­жение для наиболее широко распространенных марок сталей составляет 70…130 МПа.

Значительную часть фонда нефтедобывающих скважин в мире составляют скважины, эксплуатируемые установками ШГН. Это вызвано тем, что многие скважины сразу после окончания бурения вводятся в эксплуатацию насосным способом, а также переводом в эксплуатацию ШГН фонтанирующих и оборудованных бесштанговыми погружными электроцентробежными насосами скважин при уменьшении дебита до 100 т/сут. Таким образом, до 80% скважин в мире оборудованы именно установками ШГН.

Наземное и глубинное оборудование установки ШГН показано на рисунке 2.1. Установка состоит из приводного ЭД 1, соединенного ременной передачей 2 с редуктором 3. На выходном валу редуктора находится кривошип 4, а также противовес 5, на котором установлены грузы 6. Шатун 7 передает движение балансиру 8, к головке которого 9 прикреплена канатная подвеска 10. Полированный шток 11 проходит через сальниковый узел 12.

Подземное оборудование скважины состоит из обсадной колонны 13, насосно-компрессорных труб 14 и колонны насосных штанг 15.

Штанговый глубинный насос 19 состоит из цилиндра 16, приемного клапана 20 и нагнетательного клапана 17.

Штанговый глубинный насос (рисунок 2.2) состоит из цилиндра, приемного клапана и нагнетательного клапана.

Работает ШГН следующим образом. Цикл качания начинается в момент, когда шток (а соответственно и плунжер) движется вниз. Когда плунжер с открытым нагнетательным клапаном приближается к своему крайнему нижнему положению, всасывающий клапан закрыт. На полированный шток действует только нагрузка от веса штанг, погруженных в жидкость. В крайнем нижнем положении нагнетательный клапан закрывается.

Давление жидкости в цилиндре насоса практически равно давлению в насосных трубах над плунжером.

Рис.2.1.

Когда полированный шток начинает двигаться вверх, плунжер остается неподвижным по отношению к цилиндру насоса, так как упругие штанги не могут передать ему движение до тех пор, пока они не получат полного растяжения от веса столба жидкости в насосных трубах, приходящегося на площадь плунжера. Величина растяжения штанг прямо пропорциональна величине воспринятой части веса жидкости. Поэтому по мере увеличения растяжения штанг нагрузка на полированном штоке растет. Та часть жидкости, которую приняли на себя штанги, снимается с труб. Вследствие этого трубы сокращают свою

длину и их нижний конец, с закрытый всасывающим клапаном, движется вверх.

Так как между всасывающим и нагнетательным клапанами в цилиндре насоса находится практически несжимаемая жидкость, то движение нижнего конца труб вверх вызывает движение вверх и плунжера вместе с насосом.

Рис. 2.2.

  • 1 - насос; 2 - уровень жидкости; 3 - нефтеносный пласт;
  • 4 - колонна штанг; 5 - НКТ

В любой момент времени текущая величина растяжения штанг равна разности перемещений полированного штока и плунжера. Поэтому, чтобы штанги получили полное растяжение, необходимое для передачи движения плунжеру, полированный шток должен пройти путь, равный сумме растяжения штанг и сокращения труб.

Нагрузка на полированном штоке возрастает при одновременном перемещении его вверх. Во время последующего движения плунжера вверх на полированный шток действует неизменная нагрузка.

Из крайнего верхнего положения полированный шток начинает движение вниз. Однако плунжер не может двигаться вниз, так как под ним в цилиндре насоса находится практически несжимаемая жидкость. Нагнетательный клапан не может открыться, потому что давление в цилиндре насоса равно нулю, а над плунжером оно равно давлению всего столба жидкости в насосных трубах. Поэтому плунжер остается неподвижным по отношению к цилиндру насоса. Вследствие того, что плунжер стоит на месте, а полированный шток движется вниз, длина штанг сокращается, и нагрузка от веса жидкости постепенно передается на трубы. Давление в цилиндре насоса увеличивается пропорционально сокращению штанг.

Воспринимая нагрузку от веса жидкости, трубы соответственно удлиняются, и их нижний конец движется вниз. Так как плунжер опирается на несжимаемый столб жидкости в цилиндре насоса, то он движется вниз, оставаясь неподвижным по отношению к цилиндру насоса. Это вынужденное продвижение плунжера замедляет сокращение штанг и снятие нагрузки от веса жидкости. Поэтому штанги получают полное сокращение и полностью снимают с себя нагрузку от веса жидкости только тогда, когда полированный шток проходит расстояние, равное сумме сокращения штанг и растяжения труб от веса жидкости.

Вследствие уменьшения нагрузки при одновременном перемещении полированного штока вниз, происходит снятие со штанг нагрузки от веса жидкости.

Типы приводов штанговых глубинных насосов.

В настоящее время получили распространение два типа наземных приводов ШГН - станки-качалки и цепные приводы. Помимо этого существуют всевозможные экспериментальные приводы, среди которых можно выделить «линейный привод», «мобильные СК» (перевозимые на автомобиле) и «складные СК» (складывающиеся для прохождения через них систем полива сельскохозяйственных полей). В последнее время начинают использоваться гидравлические приводы ШГН. Поскольку управление каждым из этих приводов имеет свои особенности, необходимо рассмотреть их конструктивные особенности.

Конструкции некоторых типов СК изображены на рисунках 2.3, 2.4 и 2.5 (приводятся СК производства фирмы Lufkin, США). На рисунке 2.3 показана конструкция традиционного СК с двуплечим балансиром. На рисунке 2.4 приводится конструкция СК с одноплечим балансиром типа MARK И. Геометрия СК типа MARK II позволяет снизить момент на редукторе на 35% и уменьшить мощность приводного двигателя по сравнению с традиционным СК с двуплечим балансиром . И СК с пневматическим уравновешиванием показан на рисунке 2.5. При движении штока вниз газ в поршне сжимается, накапливая потенциальную энергию, и при движении штока вверх помогает электродвигателю поднять жидкость на поверхность.


Рис.2.3.

  • 1 - головка балансира; 2 - балансир; 3 - центральный подшипник; 4 - подшипник траверсы; 5 - лестница с ограждением; 6 - траверса; 7 - шатун; 8 - канатная подвеска;
  • 9 - траверсы канатной подвески; 10 - кривошип; 11 - подшипник пальца кривошипа;
  • 12-тормоз; 13 - противовес; 14 - ЭД; 15-стойка балансира; 16 - рычаг тормоза;
  • 17 - основание

Рис. 2.4.

  • 1 - головка балансира; 2 - траверса; 3 - балансир; 4 - центральный подшипник;
  • 5 - шатун; 6 - угловая опора; 7 - противовес; 8 - стойка балансира;
  • 9 - канатная подвеска; 10 - кривошип; 11 - траверсы канатной подвески; 12 - тормоз; 13 - редуктор; 14 - ЭД; 15 - подшипник пальца кривошипа; 16 - рычаг тормоза;
  • 17 - лестница платформы; 18 - основание

Рис.2.5.

  • 1 - головка балансира; 2 - подшипник воздушной емкости; 3 - подшипник траверсы;
  • 4 - траверса; 5 - балансир; 6 - центральный подшипник; 7 - воздушная емкость;
  • 8 - канатная подвеска; 9 - траверсы канатной подвески; 10 - лестница; 11 - шатун; 12 - угловая опора; 13 - шток поршня; 14 - стойка балансира;
  • 15 - подшипник пальца кривошипа; 16 - тормоз; 17 - кривошип; 18 - основание

Второй тип приводов - это цепные приводы. ЦП начали серийно выпускаться в начале 90-х годов XX века в Канаде и Китае, а в последующем - и в нашей стране .

Конструктивно ЦП состоит из вертикальной рамы, вдоль которой вращается цепь (рисунок 2.6). К одному из звеньев цепи прикреплен гибкий ремень, который совершает возвратно-поступательные движения. К другому концу ремня прикреплены траверсы канатной подвески полированного штока. Для цепных приводов характерны следующие особенности:

  • - движение полированного штока происходит с постоянной скоростью;
  • - большая длина хода (до 10 м);
  • - низкая скорость качаний (до 2 качаний в минуту).

На рисунке 2.7 показаны разработанные институтом ТатНИПИНефть цепные приводы типа ЦП80-6-1/4.

Рис. 2.6.

  • 1 - платформа с ограждением; 2 - шкив; 3 -траверса ремня; 4 - канатная подвеска;
  • 5 - замок штока; 6 - траверсы канатной подвески; 7 - ремень; 8 - полированный шток; 9 - звено соединения противовеса с ремнем; 10 - противовес; 11 - устье скважины; 12 - редуктор; 13 - кожух ременной передачи от ЭД; 14 - основание; 15 - полозья

Рис. 2.7.

На рисунке 2.8 показана динамика внедрения ЦП на месторождениях ОАО «Татнефть». Видно, что ЦП оснащены уже свыше тысячи скважин. В республике Башкортостан ЦП выпускаются на ООО «Нефтекамский завод нефтепромыслового оборудования».


Рис.2.8.

Так называемый «линейный» привод ШГН (Linear Rod Pump) разработан фирмой UNICO (США) в 2007 г. В «линейном» приводе на полированный шток одевается рейка с зубьями (рисунок 2.9), которая перемещается шестеренкой . Шестеренка соединяется с валом электродвигателя через редуктор. Главным достоинством линейного привода является низкая металлоемкость, и, соответственно, дешевизна. Линейный привод позволяет обеспечить только небольшую длину хода - не более 1,5 м, и нс может использоваться на глубоких скважинах, где необходима передача большой мощности ШГН.

Рис. 2.9.

  • 1 - штангодержатель; 2 - зубчатая рейка; 3 -корпус механизма; 4 - шестерня;
  • 5 - редуктор; 6 - масляная ванна; 7 - полированный шток; 8 - ЭД; 9 -основание

В последнее время наблюдается внедрение на нефтепромыслах еще одного типа приводов ШГН - гидравлического. Гидравлический привод ШГН типа

«Гейзер», разработанный ООО «НПП «ПСМ-Импэкс» (г. Екатеринбург) показан на рисунке 2.10. Гидравлическая установка «Гейзер» используется в качестве верхнего привода ШГН.

Гидравлический привод штангового насоса «Гейзер» состоит из следующих основных частей :

  • - мачта - опора с установленном на ней гидроцилиндром;
  • - укрытие, в котором установлены насосная станция и системы электронного управления;
  • - соединение насосной установки и гидроцилиндра выполнено при использовании рукавов высокого давления.

Рис.2.10.

1 - укрытие; 2 - съемный щит; 3 - рукава; 4 - плиты дорожные; 5 - щебень; 6 - короб кабельный на стойках; 7 - мачта-опора; 8 - устьевая арматура

Основные преимущества гидравлического привода заключаются в следующем:

  • - возможность плавной регулировки скорости спуска/подъема штанговой колонны;
  • - КПД гидравлического привода выше, чем у традиционных СК;
  • - возможность рекуперации энергии;
  • - простота и оперативность установки, наладки и демонтажа.

Основные технические данные гидравлического привода «Гейзер» приводятся в таблице 2.1.

Таблица 2.1

Основные технические данные гидравлического привода «Гейзер»

Система управления гидравлического привода «Гейзер» позволяет снимать динамограммы, при подключении эхолота и датчиков давления контролировать динамический и статический уровни, давление в выкидном коллекторе и затрубном пространстве.

Если коротко, то внутри происходят два основных процесса:
отделение газа от жидкости - попадание газа в насос может нарушить его работу. Для этого используются газосепараторы (или газосепаратор-диспергатор, или просто диспергатор, или сдвоенный газосепаратор, или даже сдвоенный газосепаратор-диспергатор). Кроме того, для нормальной работы насоса необходимо отфильтровывать песок и твердые примеси, которые содержатся в жидкости.
подъем жидкости на поверхность - насос состоит из множества крыльчаток или рабочих колес, которые, вращаясь, придают ускорение жидкости.

Как я уже писал, электроцентробежные погружные насосы могут применяться в глубоких и наклонных нефтяных скважинах (и даже в горизонтальных), в сильно обводненных скважинах, в скважинах с йодо-бромистыми водами, с высокой минерализацией пластовых вод, для подъема соляных и кислотных растворов. Кроме того, разработаны и выпускаются электроцентробежные насосы для одновременно-раздельной эксплуатации нескольких горизонтов в одной скважине. Иногда электроцентробежные насосы применяются также для закачки минерализованной пластовой воды в нефтяной пласт с целью поддержания пластового давления.

В сборе УЭЦН выглядит вот так:

После того, как жидкость поднята на поверхность, ее необходимо подготовить для передачи в трубопровод. Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).
Пластовая вода – это сильно минерализованная среда с содержанием солей до 300 г/л. Содержание пластовой воды в нефти может достигать 80 %. Минеральная вода вызывает повышенное коррозионное разрушение труб, резервуаров; твердые частицы, поступающие с потоком нефти из скважины, вызывают износ трубопроводов и оборудования. Попутный (нефтяной) газ используется как сырье и топливо. Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

Вначале нефть попадает на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод).

Все данные по добыче - суточный дебит, давления и прочее фиксируются операторами в культбудке. Потом эти данные анализируются и учитываются при выборе режима добычи.
Кстати, читатели, кто-нибудь знает почему культбудка так называется?

Далее частично отделенная от воды и примесей нефть отправляется на установку комплексной подготовки нефти (УКПН) для окончательного очищения и поставки в магистральный трубопровод. Однако, в нашем случае, нефть вначале проходит на дожимную насосную станцию (ДНС).

Как правило, ДНС применяются на отдаленных месторождениях. Необходимость применения дожимных насосных станций обусловлена тем, что зачастую на таких месторождениях энергии нефтегазоносного пласта для транспортировки нефтегазовой смеси до УКПН недостаточно.
Дожимные насосные станции выполняют также функции сепарации нефти от газа, очистки газа от капельной жидкости и последующей раздельной транспортировки углеводородов. Нефть при этом перекачивается центробежным насосом, а газ - под давлением сепарации. ДНС различаются по типам в зависимости от способности пропускать сквозь себя различные жидкости. Дожимная насосная станция полного цикла состоит при этом из буферной ёмкости, узла сбора и откачки утечек нефти, собственно насосного блока, а также группы свечей для аварийного сброса газа.

На нефтепромыслах нефть после прохождения групповых замерных установок принимается в буферные ёмкости и после сепарации поступает в буферную ёмкость с целью обеспечить равномерное поступление нефти к перекачивающему насосу.

УКПН представляет собой небольшой завод, где нефть претерпевает окончательную подготовку:

  • Дегазацию (окончательное отделение газа от нефти)
  • Обезвоживание (разрушение водонефтяной эмульсии, образующейся при подъеме продукции из скважины и транспорте ее до УКПН)
  • Обессоливание (удаление солей за счет добавления пресной воды и повторного обезвоживания)
  • Стабилизацию (удаление легких фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке)

Для более эффективной подготовки нередко применяют химические, термохимические методы, а также электрообезвоживание и обессоливание.
Подготовленная (товарная) нефть направляется в товарный парк, включающий резервуары различной вместимости: от 1000 м³ до 50000 м³. Далее нефть через головную насосную станцию подается в магистральный нефтепровод и отправляется на переработку. Но об этом мы поговорим в следующем посте:)

В предыдущих выпусках:
Как пробурить свою скважину? Основы бурения на нефть и газ за один пост -