Выпрямительный диод. Выпрямительные диоды


1) Статический коэффициент усиления по току в схеме с ОБ

= I кр/ I э (12.17)

Обычно =0,9–0,99.

Статический коэффициент усиления по току в схеме о ОЭ имеет другое выражение. Его можно получить из соотношения I к= I э+ I ко , если подставить в него выражениеI э= I б+ I к . ТогдаI к= (I б+ I к)+ I ко , откуда:

Iк=(/(1– ))Iб+Iко/(1– ), (12.18)

I к= I б+ I коэ, (12.19)

= /(1– ), (12.20)

где = /(1– ) статический коэффициент усиления по току в схеме с ОЭ, выраженный через .

Из уравнения (12.9) можно установить, что схема с ОЭ обладает большим усилением по току. Например, если=0,985, то=66.

Обратный ток коллекторного перехода в схеме с ОЭ.

I коэ= I ко/(1– )=(1+ ) I ко (12.21)

Коэффициенты иявляются важнейшими параметрами транзисторов. Их часто называют коэффициентами передачи тока эмиттера() и тока базы() .

2) Коэффициент обратной связи по напряжению. В схеме с ОБ он равен

= U эб/ U кб , (12.22)

в схеме с ОЭ


= U бэ/ U кэ , (12.23)

где U эб, U бэ, U кб, U кэ – соответственно приращения напряжений эмиттера, базы и коллектора.

3) Входное сопротивление. В схеме с ОБ равно:

R вхб= U эв/ I э, (12.23)

в схеме с ОЭ

R вхэ= U бэ/ I б , (12.24)

где I э иI б – соответственно приращения тока эмиттера и тока базы.

4) Выходное сопротивление. В схеме с ОБ равно

R выхб= U кб/ I к, (12.25)

в схеме с ОЭ

R выхэ= U кэ/ I к (12.26)

На рис. 12-17 показаны входные и выходные статические характеристики транзистора, включённого по схемам ОБ и ОЭ


Рис. 12-17. Входные (а,б) и выходные (в,г) статические характеристики транзистора, включенного по схеме с ОБ (а,в) и по схеме с ОЭ (б,г)

Схемы замещения транзисторов типа p-n-p

Схемы замещения транзисторов строят на той основе, что эммиттерный переход имеет сопротивление до десятков Ом, коллекторный переход имеет сопротивление до сотни килоОм, область базы имеет сопротивление до сотен Ом.

Рис. 12-18. Схема замещения транзистора p - n - p , включенного по схеме с ОБ.

В схеме ОБ (рис.12-18) входное напряжение равно сумме падений напряжений на сопротивлениях Rэ и Rб при прохождении по ним токов, соответственно эмиттерного и тока базы. Как показывают расчёты, по приведённой схеме, Rвхб совпадает с расчётами Rвхб=Uэб/десяткам Ом.

Аналогичные расчёты можно проводить по схемам замещения транзисторов, включённых по схемам с ОК и с ОЭ (рис. 12-19, а, б)

Рис 12-19. а) Схемы замещения транзистора p - n - p , включенного по схеме с ОК.

Рис 12-19. б)Схемы замещения транзистора p - n - p , включенного по схеме с ОЭ.

Н-параметры транзистора. При расчётах часто транзистор рассматривают как усиливающее мощность устройство, имеющее на входе напряжение U 1 и ток I 1 , а на выходе соответственно U 2 и I 2 . Такую модель называют активным четырёхполюсником. (рис. 12-20)

Рис. 12-20. Транзистор, как активный четырёхполюсник, включённый по схеме с ОЭ.

Рассмотрим Н-параметры транзистора включенного по схеме с ОЭ (рис.12-20)

    Входное сопротивление VT для переменного тока:

Н 11 = Uбэ/iб (Uкэ=const) (12.27)

Исследование характеристик полупроводниковых диодов и устройств на их основе

Лабораторная работа №1

СОСТАВЛЕНИЕ ОТЧЕТА И ЕГО СДАЧА

Отчет по лабораторной работе является документом о проделанной работе. Отчет должен содержать номер и название лабораторной работы, ее цель, краткие теоретические сведения, схемы электрических цепей. Отчет составляется каждым студентом самостоятельно.

При оформлении отчета обязательно следует соблюдать требования ЕСКД. Схемы выполняются с применением чертежных инструментов. При составлении схем должны соблюдаться стандартные условно-графические и позиционные обозначения соответствующие ГОСТ.

После выполнения лабораторной работы и подготовки отчета, проводиться его сдача. Студенты должны знать ответы на контрольные вопросы, уметь пояснить принцип работы лабораторной установки по схемам.

Сдача отчета по лабораторной работе проводиться в определенное преподавателем время.


1. Цель работы

Целью работы является:

Исследование вольтамперной характеристики (ВАХ) выпрямительного полупроводникового диода;

Исследование работы полупроводниковых выпрямителей.

2. Сведения, необходимые для выполнения работы

Перед выполнением работы полезно ознакомиться со следующими вопросами:

Устройство, назначение и основные характеристики выпрямительных и специальных полупроводниковых диодов;

ВАХ полупроводниковых приборов;

Схемы включения полупроводниковых диодов;

Принципы построения схем и особенности работы диодных выпрямителей.

Полупроводниковый прибор, который имеет два электрода и один (или несколько) p-n-переходов, называется диодом.

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы выпрямляемого тока они делятся на низкочастотные, высокочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов, например явление пробоя, фотоэффект, наличие участков с отрицательным сопротивлением и другие. Специальные полупроводниковые диоды находят, в частности, применение для стабилизации постоянного напряжения, регистрации оптического излучения, формирования электрических сигналов и т. д.

Выпрямительные полупроводниковые диоды изготавливаются, как правило, из кремния, германия или арсенида галлия. Классифицировать выпрямительные полупроводниковые диоды можно по конструкции и технологии изготовления. В зависимости от конструкции такие диоды делятся на плоскостные и точечные, а в зависимости от технологии изготовления - на сплавные, диффузионные и эпитаксиальные.

Плоскостные диоды имеют большую площадь p-n-перехода и используются для выпрямления больших токов (до 30 А). Точечные диоды имеют малую площадь p-n-перехода и, соответственно, предназначены для выпрямления малых токов (до 30 мА).

Обычно выпрямительный полупроводниковый диод нормально работает при напряжениях, лежащих в диапазоне до 1000 В. При необходимости увеличения выпрямляемого напряжения используются выпрямительные столбы, состоящие из ряда последовательно включенных полупроводниковых диодов, в этом случае выпрямляемое напряжение удается повысить вплоть до 15 000 В.

Предназначенные для выпрямления больших токов выпрямительные полупроводниковые диоды большой мощности называют силовыми. Они позволяют выпрямлять токи силой вплоть до 30 А. Материалом для таких диодов обычно служит кремний или арсенид галлия, поскольку германий характеризуется сильной зависимостью обратного тока через p-n-переход от температуры.

Сплавные диоды чаще всего используются для выпрямления переменного тока с частотой до 5 кГц и изготавливаются из кремния. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шоттки) могут использоваться на частотах до 500 кГц. Наилучшими частотными характеристиками обладают арсенидгаллиевые выпрямительные диоды, способные работать в диапазоне частот до нескольких мегагерц.

Основные характеристики полупроводникового диода можно получить, анализируя его ВАХ. При исследовании ВАХ следует принимать во внимание, что зависимость тока I через p-n-переход от падения напряжения U на переходе опи­сывается уравнением Эберса-Молла:

где I s - обратный ток насыщения диода, а φ Т - тепловой потенциал.

Поскольку для полупроводниковых материалов при Т = 300 К тепловой потенциал φ Т = 25 мВ, то уже при U = 0,1 В можно пользоваться упрощенной формулой:

Важным параметром, характеризующим свойства диода, является дифференциальное сопротивление p-n-перехода, равное отношению приращения падения напряжения на диоде к приращению тока через диод:

Дифференциальное сопротивление можно вычислить, используя выражения (1.2) и (1.3), а именно:

или

При протекании большого тока (в зависимости от типа диода этот ток может быть от единиц до десятков миллиампер) через p-n-переход в объеме полупроводника падает значительное напряжение, пренебрегать которым нельзя. В этом случае уравнение Эберса-Молла приобретает вид:

где R - сопротивление объема полупроводникового кристалла, которое называют последовательным сопротивлением.

На рисунке 1.1а приведено условное графическое обозначение полупроводникового диода на электрических схемах, его структура - на рисунке 1.1б . Электрод диода, подключенный к области р , называют анодом, а электрод, подключенный к области n , -катодом. Статическая вольтамперная характеристика диода показана на рисунок 1.1в .


Рисунок 1.1 - Условное обозначение (а), структура (б) и статическая вольтамперная характеристика (в) полупроводникового диода

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Урок 5 Выпрямительный диод

5.1 Выпрямительные диоды

Выпрямительными называют диоды, предназначенные для выпрямления переменного тока. Вторым элементом обозначения этих диодов является буква "Д". Условное графическое изображение выпрямительного диода показано на рис. 2.2.

В зависимости от значения выпрямляемого тока различают диоды малой мощности (/ пр, m ах < 0,3 А) и средней мощности (0,3 А < / пр, m ах < 10 А). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом.

Для рассеивания теплоты диоды средней мощности располагают на радиаторах охлаждения (рис. 2.3, б).

Обычно допустимая плотность тока, проходящего через р-n-переход, не превышает 2 А/мм 2 , поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные р-n-переходы. Получающаяся при этом большая емкость р-n-перехода существенного влияния на работу диода не оказывает в связи с малыми рабочими частотами.

Вольтамперные характеристики германиевых и кремниевых диодов одинаковой конструкции различаются. На рис 2.4 для сравнения показаны характеристики германиевого (Д3О4) и кремниевого (Д242) диодов, имеющих одинаковую конструкцию и предназначенных для работы в одном и том же диапазоне токов и напряжений. Поскольку ширина запрещенной зоны у кремния больше, чем у германия, обратный ток кремниевых диодов значительно меньше. Кроме того, обратная ветвь характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в р-n-переходе и токами утечки по поверхности кристалла.

Вследствие большого обратного тока у германиевых диодов наступает тепловой пробой, приводящий к разрушению кристалла. У кремниевых диодов из-за малого обратного тока вероятность теплового пробоя мала, и у них возникает электрический пробой.

Поскольку прямой ток диода определяется по уравнению, вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. По этой причине крутизна у германиевых диодов больше, чем у кремниевых.

На характеристики диодов существенное влияние оказывает температура окружающей среды. С ростом температуры становится интенсивнее генерация носителей зарядов, и увеличиваются обратный и прямой токи диода.

Для приближенной оценки можно считать, что с увеличением температуры на 10 градусов обратный ток германиевых диодов возрастает в 2, а кремниевых - в 2,5 раза. Однако вследствие того, что при комнатной температуре обратный ток у германиевого диода значительно больше, чем у кремниевого, абсолютное значение приращения обратного тока у германиевого диода с ростом температуры оказывается в несколько раз больше, чем у кремниевого. Это приводит к увеличению потребляемой диодом мощности, его разогреву и уменьшению напряжения теплового пробоя. У кремниевых диодов из-за малого обратного тока вероятность теплового пробоя мала, и у них вначале возникает электрический пробой.

Пробой кремниевых диодов определяется процессами лавинного умножения носителей зарядов при ионизации атомов кристаллической решетки. С повышением температуры увеличивается тепловое рассеивание подвижных носителей зарядов и уменьшается длина их свободного пробега. Для того чтобы электрон на меньшем пути приобрел энергию, достаточную для ионизации, необходимо увеличение ускоряющего поля, что достигается при большем обратном напряжении. Это объясняет увеличение пробивного напряжения кремниевых диодов с ростом температуры.

Рассмотренные типы диодов позволяют выпрямлять переменный ток в устройствах сравнительно низкого напряжения (500...700 В). Для выпрямления более высокого напряжения используют последовательное включение диодов. В настоящее время выпускаются выпрямительные столбы и блоки (второй элемент обозначения - буква "Ц"), которые состоят из специально подобранных диодов, соединенных между собой и заключенных в общий корпус.

5.2 Принцип действия, характеристики и параметры выпрямительных диодов

Принцип действия выпрямительных диодов основан на свойстве односторонней электропроводности р-п перехода. Если к диоду подвести переменное напряжение (рис. 1.15), то в течение одного полупериода, когда на аноде положительная полуволна, на р-п переходе действует прямое напряжение. При этом сопротивление диода мало; через него протекает большой прямой ток. В следующий полупериод полярность напряжения на диоде меняется на обратную. Его сопротивление значительно увеличивается; через него проходит очень малый обратный ток.

Нагрузку включают в цепь источника питания последовательно с диодом. Практически ток через нагрузку проходит только в одном направлении, поскольку обратным током по сравнению с прямым можно пренебречь. Таким образом, происходит выпрямление, т. е. преобразование переменного тока в постоянный по направлению (пульсирующий).

Схема выпрямления с одним диодом, в которой ток проходит через нагрузку в течение половины периода, является простейшей. На практике применяют более сложные схемы.

Вольтамперная характеристика диода представляет собой зависимость тока от величины и полярности приложенного напряжения. Ее вид определяется вольтамперной характеристикой р-п перехода (см. рис. 1.11). Реальные характеристики отличаются от идеальных из-за влияния различных факторов. Вольтамперная характеристика диода, как и р-п перехода, имеет две ветви: прямую и обратную.

Схема для снятия вольтамперной характеристики диода приведена на рис. 1.16. При снятии прямой ветви в схему включаются миллиамперметр для измерения прямого тока и вольтметр, позволяющий измерить доли вольта. Для получения обратной ветви необходимо изменить полярность подаваемого напряжения, включить микроамперметр, измеряющий обратный ток, и вольтметр со шкалой на десятки и сотни вольт.

На рис. 1.17 представлены реальные вольтамперные характеристики германиевого и кремниевого диода. В области очень малых прямых напряжений, пока не скомпенсирован потенциальный барьер, ток настолько еще мал и так медленно растет, что его не показывает миллиамперметр в схеме для снятия характеристик и его невозможно отложить на графике в масштабе, выбираемом для построения прямой ветви. Поэтому реальная характеристика в прямом направлении начинается не из 0, а при некотором напряжении, называемом пороговым. Пороговое напряжение U пор составляет десятые доли вольта; для кремниевого диода оно больше, чем для германиевого; с повышением температуры пороговое напряжение уменьшается. Абсолютная величина сдвига прямой ветви характеристики кремниевых диодов при изменении температуры меньше, чем у германиевых.

Обратные ветви характеристик кремниевого и германиевого диодов сильно отличаются от теоретических характеристик р-п перехода и друг от друга. Это объясняется тем, что величина обратного тока в реальных условиях определяется не только тепловым током, но также током утечки по кристаллу и другими факторами. Ток утечки зависит от обратного напряжения и почти не зависит от температуры, а тепловой ток, наоборот, зависит только от температуры. У германиевых диодов обратный ток определяется главным образом тепловым током, поэтому он сильно растет с повышением температуры и мало зависит от. При данной температуре / обр только на начальном от 0 участке резко возрастает; как было сказано, это происходит из-за уменьшения тока диффузии основных носителей заряда, протекавшего при прямом напряжении. У кремниевых диодов величина / обр определяется током утечки, так как тепловой ток значительно меньше. Поэтому с увеличением у них равномерно растет / о6р, начиная с нуля.

С повышением температуры у германиевых диодов пробивное напряжение резко падает, а у кремниевых немного увеличивается.

Основными параметрами выпрямительных диодов являются:

прямое напряжение -- значение постоянного напряжения на диоде при заданном прямом токе;

обратный ток /обр -- значение постоянного тока, протекающего через диод в обратном направлении при заданном обратном напряжении;

сопротивление диода в прямом направлении

оно составляет единицы и десятки Ом;

сопротивление диода в обратном направлении

оно составляет единицы мегаом;

дифференциальное сопротивление диода г лиф --отношение приращения напряжения на диоде к вызвавшему его малому приращению тока

Прямое и обратное сопротивления -- это сопротивления в данной точке характеристики при постоянном токе соответствующего направления; дифференциальное сопротивление -- это сопротивление при переменном токе; оно определяет наклон касательной, проведенной в данной точке вольтамперной характеристики к оси абсцисс.

При эксплуатации диодов в выпрямителях важное значение имеют предельно допустимые режимы их использования, характеризующиеся соответствующими параметрами. В целях обеспечения длительной и надежной работы диодов нельзя превышать ни при каких условиях:

максимально допустимое обратное напряжение, которое определяется с запасом как 0,7--0,8 U npo 6 ;

максимально допустимую мощность, рассеиваемую диодом -- ;

максимально допустимый постоянный прямой ток;

диапазон рабочей температуры.

Германиевые диоды работают в диапазоне температур от --60 до плюс 70--80 °С, кремниевые -- до плюс 120--160 °С; допустимая плотность прямого тока для германиевых диодов 20--40 А/см 2 , для кремниевых 60--80 А/см 2 ; для германиевых диодов допустимы обратные напряжения до 500--600 В, для кремниевых -- до 2000 --3500 В; падение напряжения на германиевом диоде при прохождении прямого тока составляет 0,3-- 0,6 В, а на кремниевом -- 0,8--1,2 В.

Сравнивая свойства германиевых и кремниевых диодов, можно отметить, что кремниевые диоды имеют на несколько порядков меньший обратный ток, допускают гораздо большие обратные напряжения и плотности прямого тока, могут быть использованы при более высоких температурах. Поэтому выпрямительные диоды изготовляют главным образом из кремния, хотя падение напряжения на кремниевом диоде при прямом токе больше, чем на германиевом.

5.3 Классификация выпрямительных диодов по мощности

Выпрямительным называют полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Принцип работы выпрямительных диодов основан на выпрямительном свойстве p-n перехода. В зависимости от максимально допустимого среднего значения прямого тока выпрямительные диоды делят на диоды малой, средней и большой мощности.

Диоды малой мощности предназначены для выпрямления токов до 300 мА, диоды средней и большой мощности соответственно от 300 мА до 10 А и от 10 до 1000 А.

Промышленностью выпускаются германиевые и кремниевые диоды. Преимущества кремниевых диодов: малые обратные токи, возможность использования при более высоких температурах окружающей среды и больших обратных напряжений, большие допустимые плотности прямого тока (60-80 А/см 2 по сравнению с 20-40 А/см 2 у германиевых); преимущества германиевых диодов: малое падение напряжения при пропускании прямого тока (0,3 - 0,6 В по сравнению с 0,8 - 1,2 В у кремниевых).

Диоды, предназначенные для работы в различных выпрямительных схемах источников питания, могут выпрямлять токи низкой частоты (50…20000 Гц). В таких диодах применяются, как правило, плоскостные p-n переходы, изготовление сплавным или диффузионным методом.

Большинство выпрямительных диодов, предназначенных для работы в устройствах преобразования электрических сигналов в радиоэлектронной аппаратуре (детекторы, ограничители уровня и др.), работают на частотах вплоть до нескольких сотен мегагерц. По методам изготовления, конструктивному исполнению, характеристикам и параметрам эти группы диодов существенно отличаются от низкочастотных выпрямительных диодов и называются высокочастотными выпрямительными диодами.

Справочным параметром низкочастотных выпрямительных диодов малой мощности является допустимый выпрямительный ток (допустимое среднее значение прямого тока), который определяет в заданном диапазоне температур допустимое среднее за период значение длительно протекающих через диод импульсов прямого тока синусоидальной формы при паузах в 180? (полупериод) и частоте f = 50 Гц, обозначается . Другим основным параметром является максимально допустимое обратное напряжение -- напряжение, приложенное в обратном направлении. Это напряжение диод может выдержать в течение длительного времени без нарушения его работоспособности. Максимальное обратное напряжение маломощных выпрямительных диодов лежит в диапазоне от десятков вольт до 1200 В. На более высокие напряжения промышленностью выпускаются выпрямительные столбы, использующие последовательное соединение диодов. Обратные токи не превышают 300 мкА для германиевых диодов и 10 мкА для кремниевых. Конструкция низкочастотных выпрямительных диодов малой мощности приведена на рис. 4.3, а на примере сплавного германиевого диода, а его вольт-амперная характеристика -- на рис. 4.3, б.

Конструктивно выпрямительный диод выполнен в металлическом герметичном сварном корпусе. Для улучшения теплоотвода кристалл 7 припаивают непосредственно к кристаллодержателю 8, который, являясь базовой областью, имеет внешний вывод 9. Этот вывод принято называть катодом. К основанию кристаллодержателя приваривается крышка корпуса 4 со стеклянным изолятором 3, через который проходит трубка 2 с внешним выводом от эмиттера /. Эмиттерный вывод принято называть анодом. Внутренний вывод анода 5 соединен со слоем эмиттера, который получается вплавлением таблетки индия 6 в тело германия. На рис. 4.3, в дано условное графическое обозначение диода. В выпрямительных диодах средней мощности большой прямой ток достигается увеличением размеров кристалла, в частности рабочей площади р-п перехода. Диоды средней мощности преимущественно выпускаются кремниевыми. В связи с этим обратный ток этих диодов при сравнительно большой площади р-п перехода достаточно мал (несколько десятков микроампер). Теплота, выделяемая в кристалле от протекания прямого тока в диодах средней мощности, уже не может быть рассеяна корпусом прибора. Для улучшения условий теплоотвода в этих диодах применяют дополнительные охладители-радиаторы. Радиаторы изготавливают из металла, обладающего хорошей теплопроводностью (обычно сплавы алюминия) и большей площадью поверхности для лучшей передачи теплоты в окружающую среду. Чтобы уменьшить механические напряжения, возникающие от нагрева и охлаждения при работе диода, материал корпуса и трубки делают из сплава ковара (29 % Ni, 18 % Со и 53% Fe), у которого коэффициент линейного расширения согласован со стеклом. Для улучшения излучающей способности радиаторы часто подвергают чернению. Для крепления радиатора корпус диода имеет стержень с винтовой нарезкой. Пример возможной конструкции выпрямительных диодов средней мощности приведен на рис. 4.4.

Мощные (силовые) диоды различаются по частотным свойствам и работают на частотах от десятков герц до десятков килогерц. Мощные диоды изготавливаются преимущественно из кремния. Кремниевая пластина, создаваемая диффузионным методом, представляет собой диск диаметром 10--100 мм и толщиной 0,3--0,6 мм. Пример возможной конструкции мощного диода показан на рис. 4.5.

Работа при больших токах и высоких обратных напряжениях связана с выделением значительной мощности в р-п переходе. Поэтому в установках с мощными диодами применяют воздушное и жидкостное охлаждение. При воздушном охлаждении тепло отводится с помощью радиатора и проходящего вдоль его теплоотводящих ребер потока воздуха. При этом охлаждение может быть естественным, если отвод теплоты в окружающую среду определяется естественной конвенкцией воздуха, или принудительным, если используется принудительный обдув корпуса прибора и его радиатора с помощью вентилятора.

Рис 4.4. Конструкция кремниевого выпрямительного диода средней мощности: 1 - внешний вывод (анод), 2 - трубка, 3 - стеклянный изолятор 4 - корпус, 5 - внутренний вывод анода, 6 - алюминий 7 - кристалл кремния, 8 - теплоотводящее основание, 9 - кристаллодержатель, 10 - внешний вывод (катод).

Рис 4.5. Конструкция мощного кремниевого выпрямительного диода. 1 - внешний гибкий вывод (анод), 2 - стакан, 3 - стеклянный изолятор, 4 - внутренний гибкий вывод анода, 5 - корпус, 6 - чашечка, 7 - кристалл кремния, 8 - кристаллодержатель (катод), 9 - шпилька для крепления к радиатору.

При жидкостном охлаждении в радиатор по специальным каналам пропускается теплоотводящая жидкость, например вода, антифриз, трансформаторное масло, синтетические диэлектрические жидкости. В последнее время широкое применение получило испарительное охлаждение, основанное на отводе теплоты за счет образования пузырей пара у теплоотводящей поверхности охладителя. Образовавшийся пар поступает в теплообменник, связанный с внешней средой. Этот способ эффективен из-за высоких значений теплоты парообразования жидкостей. Силовые диоды нуждаются в защите от кратковременных перенапряжений, возникающих при резких сбросах нагрузки, коммутационных и аварийных режимах, а также атмосферных воздействиях и грозовых молний. При этом к диоду прикладывается в обратном направлении дополнительный импульс напряжения, который может привести вначале к электрическому пробою, а затем к тепловому. Чтобы не наступил тепловой пробой, после которого переход теряет свои выпрямительные свойства, необходимо ограничить по времени действие импульса перенапряжения. Такую задачу должны выполнять различные устройства аварийной автоматики.

Очень часто требуемые допустимые выпрямленный ток и максимальное обратное напряжение превышают номинальные значения параметров существующих выпрямительных диодов. В этих случаях задача решается соответственно параллельным и последовательным соединением диодов.

Последовательное включение выпрямительных диодов делается тогда, когда необходимо увеличить суммарное допустимое обратное напряжение, прикладываемое к каждому из них.

Обратные сопротивления выпрямительных диодов имеют большой разброс (различия достигают до одного-двух порядков), поэтому обратное напряжение, приложенное к цепи последовательно соединенных диодов, распределится неравномерно, а пропорционально их обратным сопротивлениям. Наибольшее падение напряжения будет на диоде с большим обратным сопротивлением. Это может привести к электрическому, а затем тепловому пробою р-п перехода этого диода; после этого обратное напряжение распределится между оставшимися диодами. Произойдет пробой следующего диода, у которого обратное сопротивление перехода наибольшее среди оставшихся диодов. И так один за другим диоды выйдут из строя. Чтобы этого не произошло, следует уравнять падения обратных напряжений на диодах последовательной цепочки путем шунтирования их резисторами одинакового сопротивления. Сопротивление шунтирующего резистора подбирается большим, чтобы исключить большие потери мощности на нем. На рис. 4.6 представлена схема однополупериодного выпрямителя из последовательно соединенных диодов, параллельно которым включены одинаковые шунтирующие резисторы. Сопротивление резистора выбирается где -- сопротивление нагрузки выпрямителя. При таком подключении всех п шунтирующих резисторов распределение обратных напряжений на диодах будет одинаковым: , где -- обратное напряжение на входе выпрямителя.

Параллельное включение выпрямительных диодов делается для увеличения допустимых значений выпрямительного тока. Поскольку из-за технологических отклонений имеется значительный разброс значений прямых сопротивлений переходов, то, вставив в каждую из параллельных ветвей по одному балластному резистору , можно уравнять прямые токи в параллельных ветвях, при этом необходимо выполнить условие.

На рис. 4.7 приведена схема однополупериодного выпрямителя с параллельным включением диодов. Чем больше значения резисторов R 6 , тем меньше различий между прямыми токами в параллельных цепях. Однако чрезмерное увеличение значений балластных резисторов приводит к увеличению падения напряжения внутри выпрямителя, что снижает напряжение на выходе выпрямителя и понижает его КПД.

Подобные документы

    Параметры, свойства, характеристики полупроводниковых диодов, тиристоров и транзисторов, выпрямительных диодов. Операционный усилитель, импульсные устройства. Реализация полной системы логических функций с помощью универсальных логических микросхем.

    контрольная работа , добавлен 25.07.2013

    Понятие полупроводникового диода. Вольт-амперные характеристики диодов. Расчет схемы измерительного прибора. Параметры используемых диодов. Основные параметры, устройство и конструкция полупроводниковых диодов. Устройство сплавного и точечного диодов.

    курсовая работа , добавлен 04.05.2011

    Классификация диодов в зависимости от технологии изготовления: плоскостные, точечные, микросплавные, мезадиффузионные, эпитаксально-планарные. Виды диодов по функциональному назначению. Основные параметры, схемы включения и вольт-амперные характеристики.

    курсовая работа , добавлен 22.01.2015

    Понятие диодов как электровакуумных (полупроводниковых) приборов. Устройство диода, его основные свойства. Критерии классификации диодов и их характеристика. Соблюдение правильной полярности при подключении диода в электрическую цепь. Маркировка диодов.

    презентация , добавлен 05.10.2015

    Исследование вольтамперных характеристик диодов, снятие характеристик при различных значениях напряжения. Аппроксимация графиков вольтамперных характеристик диодов, функции первой и второй степени, экспоненты. Исходный код программы и полученные данные.

    лабораторная работа , добавлен 24.07.2012

    Определение максимального и минимального значений выпрямленного сетевого напряжения, диаграммы работы преобразователя. Выбор выпрямительных диодов, трансформатора, транзистора, выпрямителя и элементов узла управления. Расчет демпфирующей цепи и КПД.

    курсовая работа , добавлен 18.02.2010

    Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа , добавлен 14.12.2013

    Построение схем с диодом из библиотеки SimElectronics и электрическим диодом из библиотеки Simscape и графиков зависимости тока от напряжения. Аппроксимация графиков вольтамперных характеристик диодов различными методами при 2-х разных температурах.

    контрольная работа , добавлен 08.07.2012

    Общие сведения об измерительных источниках оптического излучения, исследование их затухания. Основные требования к техническим характеристикам измерителей оптической мощности. Принцип действия и конструкция лазерных диодов, их сравнительный анализ.

    дипломная работа , добавлен 09.01.2014

    Понятие полупроводниковых приборов, их вольтамперные характеристики. Описание транзисторов, стабилитронов, светодиодов. Рассмотрение типологии предприятий. Изучение техники безопасности работы с электронной техникой, мероприятий по защите от шума.

Называется прибор с одним p-n переходом и двумя выводами, позволяющими включать его во внешнюю электрическую цепь. О принципе действия и физике проходящего в этом приборе процессе будет рассказано в данном материале.

Теоретическая часть

Работа полупроводниковых диодов основана на свойствах p-n перехода, который образуется на границе раздела областей полупроводника с дырочной (p) и электронной проводимостью (n). Концентрация электронов в n - области значительно больше, чем в p-области, а дырок в p - области больше, чем в n - области. Неодинаковая плотность частиц вызывает диффузию основных носителей из областей с большей концентрацией: электронов из n - области и дырок из p - области. В результате рекомбинации на границе p - и n - областей возникает обедненный носителями слой, который называется запирающим (рис. 1, а). Ионы донорной и акцепторной примеси в области запирающего слоя создают электрическое поле с напряженностью Евн, которое препятствует дальнейшей диффузии основных носителей и создает дрейфовый ток, обусловленный неосновными носителями.

Рисунок 1. Полупроводниковый диод

При подключении источника э.д.с. к n-p переходу в зависимости от направления вектора напряженности источника ширина запирающего слоя может:

  • Уменьшаться - векторы напряженности источника и запирающего слоя противоположны, что приводит к увеличению диффузного тока;
  • Увеличиваться - векторы напряженности источника и запирающего слоя направлены в одну сторону, что приводит к уменьшению диффузионных токов практически до нуля и увеличению дрейфового тока.

Перечисленные свойства p-n перехода используются в полупроводниковых диодах. Полупроводниковые диоды имеют несимметричные электронно-дырочные переходы. Одна область полупроводника с более высокой концентрацией примесей (высоколегированная область) служит эмиттером, а другая с меньшей концентрацией примесей (низколегированная область) - базой.

Вывод, который подключает эмиттер к внешней электрической цепи, называется катодным, а вывод, который подключается к базе - анодным (рис. 1, б).

Выпрямительные диоды предназначены для преобразования переменного тока в ток одного направления. Вольт - амперная характеристика (ВАХ) полупроводникового диода показана на рис. 2.


Рисунок 2. ВАХ полупроводникового диода

Вольт - амперная характеристика имеет прямую («1» на рис. 2) и обратную («2» на рис. 2) ветви. При включении диода в прямом направлении (прямая ветвь ВАХ) вектор напряженности внешнего источника Еист направлен противоположно вектору напряженности p-n перехода диода, положительный полюс источника подключен к аноду диода, а отрицательный полюс к катоду диода. При этом суммарный вектор напряженности уменьшается. Это приводит к уменьшению потенциального барьера в p-n переходе.

В этом режиме часть основных носителей заряда с наибольшими значениями энергии будет преодолевать понизившийся потенциальный барьер, и проходить через p-n-переход. В переходе нарушится равновесное состояние, и через него потечет диффузионный ток обусловленный инжекцией электронов из n-области в полупроводник и дырок - из p-области в n-полупроводник.

Напряжение Uпор, начиная с которого малые приращения прямого напряжения вызывают резкое увеличение тока, называют пороговым.

При включении диода в обратном направлении (обратная ветвь ВАХ) направление вектора напряженности внешнего источника Еист совпадает с вектором напряженности поля перехода: отрицательный полюс источника соединен катодом диода, а положительный полюс источника соединен с анодом диода. Такое включение диода приводит к увеличению потенциального барьера p-n перехода диода и ток через переход будет определяться неосновными носителями заряда: электронами из p-области в n-область и дырками из n-области в p-область. Этот процесс называется экстракцией неосновных носителей, а ток, протекающий через диод, называют обратным током Iобр.

При дальнейшем увеличении обратного напряжения, приложенного к диоду, при некотором значении Uобр1 в нем будет происходить резкий рост обратного тока - участок «3» на рисунке 2. Это явление называется пробоем. Различают электрический и тепловой пробой p-n перехода. Лавинный пробой - это электрический пробой перехода, вызванный лавинным размножением носителей заряда под действием сильного электрического поля. Электроны, ускорившись в поле запирающего слоя, выбивают из атомов полупроводника валентные электроны, которые, в свою очередь, успевают ускориться и выбить новые электроны, и т.д. Процесс развивается лавинообразно и сопровождается быстрым нарастанием обратного тока.

Тепловой пробой возникает из-за перегрева p-n перехода или отдельного его участка (участок «4» на рис. 2). При этом происходит интенсивная генерация пар электрон - дырка и увеличивается обратный ток, что приводит к увеличению мощности, выделяющейся в p-n переходе и дальнейшему его разогреву. Этот процесс также лавинообразный, завершается расплавлением перегретого участка перехода и выходом диода из строя.

В зависимости от соотношения линейных размеров выпрямляющего p-n перехода полупроводниковые диоды делятся на два класса: точечные и плоскостные. Точечные диоды имеют малую емкость p-n перехода и применяются для выпрямления переменного тока любых частот вплоть до СВЧ. В плоскостных диодах емкость p-n перехода составляет несколько десятков пФ.

Практическая часть

Лабораторная работа посвящена исследованию полупроводникового выпрямительного диода. Исследуемый диод FR302 закреплен на стеклотекстолитовой плате вместе с токоограничительным резистором МЛТ-2 43 Ом. Резистор предназначен для ограничения тока при снятии прямой ветви характеристики, т. к. при открытом p-n-переходе сопротивление диода мало.


Проводимость диода исследуется с помощью миллиамперметра (микроамперметра) и вольтметра, по показаниям, которых строится вольтамперная характеристика (ВАХ) диода.


Рисунок 3. Электрическая принципиальная схема снятия прямой ветви ВАХ диода

Питание установки осуществляется от регулируемого блока питания, который дает постоянный ток напряжением от 0 до 12 В (стабилизированный выход) и постоянный ток напряжением от 0 до 36 В (нестабилизированный выход).


Для снятия прямой ветви характеристики используется миллиамперметр и милливольтметр, т. к. в открытом состоянии падение напряжения на диоде составляет около 1 В, а ток через него достигает 200 мА.


Рисунок 4. Электрическая принципиальная схема снятия обратной ветви ВАХ диода

Для снятия обратной ветви ВАХ диода обратное напряжение на диоде доводится до 36 В. При таком напряжении обратный ток диода FR302 остается небольшим (единицы-десятки микроампер), поэтому для его измерения в цепь вместо миллиамперметра включают микроамперметр. Сильно увеличивать обратный ток диода крайне нежелательно, так как это может привести к его выходу из строя. К тому же напряжения выше 42 В опасны, и их использование нежелательно.







Материал предоставил для изучения - Denev .

Обсудить статью ПОЛУПРОВОДНИКОВЫЕ ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ

Полупроводниковые диоды

Принцип действия диода основан на свойствах p-n-переходов, образуемых в результате полупроводников с различным типом проводимости или контакта полупроводника с металлом (диод Шотки).

Классификация диодов:

1. Выпрямительные

2. Стабилитроны

3. Туннельные

4. Обращённые

5. Варикапы

6. Фотодиоды

7. Светодиоды

8. Диоды Шотки

Делятся на:

Точечные

Плоскостные

Плоскостные диоды обладают большей ёмкостью перехода в схеме замещения.

Так как сопротивление емкости обратно пропорционально частоте напряжения согласно формуле

,

то на высоких частотах сопротивление падает практически до нуля, т.е. переход закорачивается, а следовательно, p-n-переход не работает на этих частотах.

При подаче прямого напряжения (« + » на анод, « - » на катод) на диод до практически 0,3 В ток через диод не протекает. Это напряжение было необходимо для преодоления потенциального барьера контактного перехода. При дальнейшем повышении напряжения ток имеет квадратичную зависимость.

Дальнейшее повышение напряжения может привести к такому росту тока, который превысит максимально допустимое значение, а температура области катода, где происходит рекомбинация электронов и дырок, может превысить максимально допустимое значение. В этом случае происходит необратимый процесс теплового пробоя p-n-перехода.

При подаче обратного напряжения ширина p-n-перехода увеличивается, тем самым ограничивается число инжектируемых электронов из n- в p-область. При достижении U ПР происходит электрический пробой (процесс обратимый). При дальнейшем повышении напряжения электрический пробой переходит в тепловой (необратимый процесс).


Стабилитроны

Принцип действия основан на обратимом электрическом пробое.

При достижении обратного напряжения U ОБР =U СТ происходит электрический пробой p-n-перехода, в результате ток через стабилитрон I C резко возрастает. В результате падение напряжения на R Б увеличивается, а на нагрузке R H остается без изменения.

Стабилитроны серии Д814 имеют напряжение стабилизации от 3 до 20 В.


ЛЕКЦИЯ 3

Туннельный диод

Принцип действия основан на применении так называемого туннельного эффекта.

Используется в быстропереключающих схемах и генераторах. Он обладает отрицательным дифференциальным сопротивлением на определенном участке ВАХ.

Согласно закону Ома . Если повышается напряжение, то ток должен увеличиваться для любого материала. Но при возникновении туннельного эффекта при повышении напряжения от U min до U max ток уменьшается.

Дифференциальное сопротивление на участке, где проявляется туннельный эффект, имеет отрицательное значение, а соотношение между максимальным и минимальным токами

Для получения генерации синусоидальных колебаний в контур включают туннельный диод. В результате алгебраическая сумма активных сопротивлений в контуре равна 0. Поэтому в контуре возникают незатухающие колебания. Отрицательное дифференциальное сопротивление получается за счёт эффекта туннелирования электронов из n-области в р-область противоположно направлению основного электрического поля, приложенного к туннельному диоду. В результате общее число электронов, прошедших через сечение p-n-перехода за единицу времени с ростом внешнего напряжения уменьшается.


Обращённые диоды

Обращенные диоды используются для выпрямления малых напряжений, т.е. обратная ВАХ является как бы прямой для выпрямительного диода. Обращенный диод при малых напряжениях (до 0,3 В) не пропускает ток в прямом направлении, в то же время в обратном направлении электрический пробой наступает уже при нулевом обратном напряжении.


Варикап

Варикап представляет собой электрически управляемую ёмкость.

Ёмкость, как известно из курса физики, представляет собой зависимость

Т.к. ширина p-n-перехода d зависит от приложенного обратного напряжения U обр, то при постоянстве абсолютной, относительной диэлектрических проницаемостей материала и площади p-n-перехода, ёмкость варикапа зависит только от d.

Под воздействием U обр регулируется расстояние между p и n областями. Получаем зависимость: при повышении обратного напряжения ёмкость вырикапа падает.

В качестве варикапов необходимо применять плоскостные диоды, чтобы увеличить ёмкость. Варикапы используются как подстроечные, электрически управляемые конденсаторы в колебательных контурах. Ёмкость их порядка десятков пикофарад (пФ). Варикапы применяют для автоматической подстройки частоты колебаний для удержания её в заданных пределах.


Фотодиод

Фотодиод – это полупроводниковый прибор, у которого обратный ток зависит от освещенности катода. ВАХ – на рисунке. Зависимость тока от величины освещенности аналогично зависимости тока от приложенного напряжения для обычного диода (выпрямительного), т.е. воздействие электрического и магнитного полей оказывает аналогичное действие.


Светодиод

Светодиод – полупроводниковый прибор, при протекании прямого тока через который область катода начинает светиться.

При протекании примого тока I через p-n-переход число электронов, находящихся на внешней орбите атома уменьшается за счёт их перехода на внутренние орбиты. Это сопровождается выделением квантов электромагнитного излучения. При подборе соответствующего полупроводникового материала мы можем выделить излучение с определенной длиной волны. На практике есть светодиоды, излучающие в областях, начиная с ультрафиолетовой (l<0,4 мкм) и кончая ближней инфракрасной (ИК) – с l до 2 мкм.

При получении излучения в полупроводниковых лазерах используют также данный эффект, но излучение лазера когерентно и монохроматично.


Диод Шотки

Использует контактные явления между полупроводником и металлом. Эффект Шотки возникает лишь в том случае, когда работа выхода электронов в вакуум из металла больше, чем работа выхода электрона из полупроводника.

При контакте полупроводника с металлом за счёт разности энергии выхода электронов из полупроводника диффундируют в область металла, тем самым создают p-n-переход. За счёт отсутствия неосновных носителей заряда (дырок) в металле переход из открытого в закрытое состояние практически безинерционен (время перехода 1¸2 нс).