Расчет теплообменника: пример. Расчет площади, мощности теплообменника


Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

Виды теплообмена

Теперь поговорим о - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день - конечно же, рекуперативные.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые - это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду - в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов - это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное - многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср - удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k - коэффициент теплопередачи (принимаем равным 6350 [Вт/м 2 ]), а ΔТср.лог. - среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м 2 .

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ - плотность, [кг/м 3 ], η - динамическая вязкость, [Н*с/м 2 ], v - скорость среды в канале, [м/с], d см - смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 - в условиях нагрева жидкости, и n = 0,3 - в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ - коэффициент теплопроводности, ϭ - толщина стенки канала, α1 и α2 - коэффициенты теплоотдачи от каждого из теплоносителей стенке.

Рассчитываем коэффициент  1 со стороны греющего пара для случая конденсации на пучке n вертикальных труб высотой Н:


= 2,04
= 2,04
= 6765 Вт/(м 2 К), (10)

здесь , , , r физические параметры конденсата при температуре пленки конденсата t к, Н – высота нагревательных труб, м; t – перепад температур между греющим паром и стенками труб (принимаем в пределах 3…8 0 С).

Значения функции А t для воды при температуре конденсации пара

Температура конденсации пара t к, 0 С

О правильности расчетов судят, сопоставляя полученное значение  1 и его предельные величины, которые приведены в п. 1.

Рассчитаем коэффициент теплоотдачи α 2 от стенок труб к воде.

Для этого необходимо выбрать уравнение подобия вида

Nu = ARe m Pr n (11)

В зависимости от величины числа Re определяют режим течения жидкости и выбирают уравнение подобия.

(12)

Здесь n– число труб на 1 ход;

d вн = 0,025 - 20,002 = 0,021 м – внутренний диаметр трубы;

При Re > 10 4 имеем устойчивый турбулентный режим движения воды. Тогда:

Nu = 0,023  Re 0,8  Pr 0,43 (13)

Число Прандтля характеризует соотношение физических параметров теплоносителя:

=
= 3,28. (14)

, , , с – плотность, динамическая вязкость, теплопроводность и теплоемкость воды при t ср.

Nu = 0,023 26581 0,8  3,28 0,43 = 132,8

Число Нуссельта характеризует теплоотдачу и связано с коэффициентом  2 выражением:

Nu =
,  2 = =
= 4130 Вт/(м 2 К) (15)

С учетом значений  1 ,  2 , толщины стенки трубы  = 0,002 м и ее теплопроводности  ст, определяем коэффициент К по формуле (2):

=
= 2309 Вт/(м 2 К)

Сопоставляем полученное значение К с пределами для коэффициента теплопередачи, которые были указаны в п 1.

Определяем площадь поверхности теплообмена из основного уравнения теплопередачи по формуле (3):

=
= 29 м 2 .

Вновь по таблице 4 выбираем стандартный теплообменник:

площадь поверхности теплообмена F = 31 м 2 ,

диаметр кожуха D = 400 мм,

диаметр труб d = 25×2 мм,

число ходов z = 2,

общее число труб N = 100,

длина (высота) труб H = 4 м.

Запас площади

(запас площади должен быть в пределах 5…25%).

4. Механический расчет теплообменника

При расчете на внутреннее давление толщина стенки корпуса  к проверяется по формуле:

 к =
+ С, (16)

где р – давление пара 4·0,098 = 0,39 Н/мм 2 ;

D н – наружный диаметр кожуха, мм;

 = 0,9 коэффициент прочности сварного шва;

 доп = 87…93 Н/мм 2 – допускаемое напряжение для стали;

С = 2…8 мм – прибавка на коррозию.

 к =
+ 5 = 6 мм.

Принимаем нормализованную толщину стенки 8 мм.

Трубные решетки изготавливаются из листовой стали. Толщина стальных трубных решеток берется в пределах 15…35 мм. Она выбирается в зависимости от диаметра развальцованных труб d н и шага труб .

Расстояние между осями труб (шаг труб) τ выбирают в зависимости от наружного диаметра труб d н:

τ = (1,2…1,4)·d н, но не менее чем τ = d н + 6 мм.

Нормализованный шаг для труб d н = 25 мм равен τ = 32 мм.

 р =
.

При заданном шаге 32 мм толщина решетки должна быть не менее

 р =
= 17,1 мм.

Окончательно принимаем  р = 25 мм.

При расчете фланцевых соединений задаются размером стягивающего болта. Принимаем во фланцевом соединении для аппаратов с диаметром D в = 400…2000 мм стальной болт М16.

Определим допустимую нагрузку на 1 болт при затяжке:

q б = (d 1 – c 1) 2 , (17)

где d 1 = 14 мм – внутренний диаметр резьбы болта;

с 1 = 2 мм – конструктивная прибавка для болтов из углеродистой стали;

 = 90 Н/мм 2 – допустимое напряжение на растяжение.

q б = (14 – 2) 2  90 = 10174 Н.

Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Имеет следующий вид:

Q = F‧k‧Δt, где:

  • Q - размер теплового потока, Вт;
  • F - площадь рабочей поверхности, м2;
  • k - коэффициент передачи тепла;
  • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

  • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

Исходные данные:

  • Температура греющего носителя при входе t 1 вх = 14 ºС;
  • Температура греющего носителя при выходе t 1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
  • Расход массы греющего носителя G 1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Специалисты компании «Теплообмен» на основании предоставленных индивидуальных данных производят быстрый расчет теплообменников по заявкам клиентов.

Метод расчета теплообменника

Чтобы решить задачу теплообмена, необходимо знать значение нескольких параметров. Зная их, можно определить другие данные. Самыми важными представляются шесть параметров:

  • Количество тепла, которое должно быть передано (тепловая нагрузка или мощность).
  • Температура на входе и выходе на стороне первого и второго контура теплообменника.
  • Максимально допустимые потери напора на стороне и первого, и второго контура.
  • Максимальная рабочая температура.
  • Максимальное рабочее давление.
  • Расход среды на стороне первого и второго контура.

Если расход среды, удельная теплоемкость и разность температур на одной стороне контура известны, можно рассчитать величину тепловой нагрузки.

Температурная программа

Этот термин означает характер изменения температуры среды обоих контуров между ее значениями на входе в теплообменник и выходе из него.

T1 = Температура на входе – горячая сторона

T2 = Температура на выходе – горячая сторона

T3 = Температура на входе – холодная сторона

T4 = Температура на выходе – холодная сторона

Средний логарифмический температурный напор

Средний логарифмический температурный напор (LMTD) является эффективной движущей силой теплообмена.

Если не учитывать потери тепла в окружающее пространство, которыми можно пренебречь, правомерно утверждать, что количество тепла, отданное одной стороной пластинчатого теплообменника (тепловая нагрузка) равно количеству тепла, полученному другой его стороной.

Тепловая нагрузка (P) выражается в кВт или в ккал/ч.

P = m x c p x δt,

m = Массовый расход, кг/с

c p = Удельная теплоемкость, кДж/(кг x °C)

δt = Разность температур на входе и выходе одной стороны, °C

Термическая длина

Термическая длина канала или тета-параметр (Θ) является безразмерной величиной, которая характеризует соотношение между разностью температур δt на одной стороне теплообменника и его LMTD.

Плотность

Плотностью (ρ) является масса единицы объема среды и выражается в кг/м 3 или г/дм 3 .

Расход

Этот параметр может выражаться с использованием двух различных терминов: массы или объема. Если имеется в виду массовый расход, тогда он выражается в кг/с или в кг/ч, если объемный расход, то используются такие единицы, как м 3 /ч или л/мин. Чтобы перевести объемный расход в массовый, нужно величину объемного расхода умножить на плотность среды. Выбор теплообменника для выполнения конкретной задачи обычно определяет требуемая величина расхода среды.

Потери напора

Размер пластинчатого теплообменника непосредственно зависит от величины потери напора (∆p). Если есть возможность увеличить допустимые потери напора, то можно будет использовать более компактный и, следовательно, менее дорогой теплообменник. За ориентир для пластинчатых теплообменников для рабочих жидкостей вода/вода можно считать допустимой потери напора в диапазоне от 20 до 100 кПа.

Удельная теплоемкость

Удельная теплоемкость (с p) представляет собой количество энергии, которое необходимо для повышения температуры 1 кг какого-либо вещества на 1 °C при данной температуре. Так, удельная теплоемкость воды при температуре 20 °C равна 4,182 кДж/(кг х °C) или 1,0 ккал/(кг х °C).

Вязкость

Вязкость является мерой текучести жидкости. Чем ниже вязкость, тем выше текучесть жидкости. Вязкость выражается в сантипуазах (сП) или в сантистоксах (сСт).

Коэффициент теплопередачи

Коэффициент теплопередачи теплообменника является важнейшим параметром, от которого зависит сфера применения устройства, а также его эффективность. На данную величину влияет скорость движения рабочих сред, а также особенности конструкции агрегата.

Коэффициент теплопередачи теплообменника представляет собой совокупность следующих величин:

  • теплоотдача от греющей среды к стенкам;
  • теплопередача от стенок к нагреваемой среде;
  • теплопередача водонагревателя.

Коэффициент теплопередачи теплообменника рассчитывается по определенным формулам, состав которых также зависит от вида теплообменного агрегата, его габаритов, а также от характеристик веществ, с которыми работает система. Кроме того, необходимо учитывать внешние условия эксплуатации аппаратуры – влажность, температуру и т.д.

Коэффициент теплопередачи (k) является мерой сопротивления тепловому потоку, вызываемого такими факторами, как материал пластин, количество отложений на ее поверхности, свойства жидкостей и тип используемого теплообменника. Коэффициент теплопередачи выражается в Вт/(м 2 x °C) или в ккал/(ч x м 2 x °C).

Выбор теплообменника

Каждый параметр в этих формулах может повлиять на выбор теплообменника. Выбор материалов же обычно не влияет на эффективность теплообменника, от них зависит только его прочность и стойкость к коррозии.

Применяя пластинчатый теплообменник , мы получаем преимущества в виде небольших разностей температур и малой толщины пластин, которая обычно равна от 0,3 до 0,6 мм.

Коэффициенты теплоотдачи (α1 и α2) и коэффициент загрязнения (Rf), как правило, очень малы, что объясняется высокой степенью турбулентности течения среды в обоих контурах теплообменника. Этим же обстоятельством можно объяснить и высокое значение расчетного коэффициента теплопередачи (k), которое при благоприятных условиях может достигать величины 8 000 Вт/(м 2 х °C).

В случае применения обычных кожухотрубных теплообменников величина коэффициента теплопередачи (k) не превысит значение 2 500 Вт/(м 2 х °C).

Важными факторами минимизации стоимости теплообменника являются два параметра:

1. Потери напора. Чем выше допустимая величина потерь напора, тем меньше размеры теплообменника.

2. LMTD. Чем выше разность температур жидкостей в первом и втором контуре, тем меньше размеры теплообменника.

Ограничения по давлению и температуре

Стоимость пластинчатого теплообменника зависит от максимально допустимых значений давления и температуры. Основное правило можно сформулировать следующим образом: чем ниже максимально допустимые значения рабочих температуры и давления, тем меньше стоимость теплообменника.

Загрязнение и коэффициенты

Допустимое загрязнение может быть учтено в вычислении через расчетный запас (M), то есть, за счет дополнительного процента поверхности теплообмена или введения коэффициента загрязнения (Rf), выражаемого в таких единицах, как (м 2 х °C)/Вт или (м 2 х ч х °C)/ккал.

Коэффициент загрязнения при расчете пластинчатого теплообменника должен браться значительно меньшим, чем при расчете кожухотрубного теплообменника. Для этого есть две причины.

Более высокая турбулентность потока (k) означает меньший коэффициент загрязнения.

Конструкция пластинчатых теплообменников обеспечивает гораздо более высокую степень турбулентности и, следовательно, более высокий тепловой коэффициент полезного действия (кпд), чем это имеет место в традиционных кожухотрубных теплообменниках. Обычно коэффициент теплопередачи (k) пластинчатого теплообменника (вода/вода) может составлять от 6 000 до 7 500 Вт/(м 2 х °C), в то время как традиционные кожухотрубные теплообменники при одинаковом применении обеспечивают коэффициент теплопередачи порядка лишь 2 000–2 500 Вт/(м 2 х °C). Типичное значение Rf, обычно используемое в расчетах кожухотрубных теплообменников, равно 1 х 10-4 (м 2 х °C)/Вт. В этом случае использование значения k от 2 000 до 2 500 Вт/(м 2 х °C) дает расчетный запас (M = kc х Rf) порядка 20–25 %. Чтобы получить такое же значение асчетного запаса (M) в пластинчатом теплообменнике с коэффициентом теплопередачи порядка 6 000–7 500 Вт/(м 2 х °C), надо взять коэффициент загрязнения, равный всего лишь 0,33 х 10-4 (м 2 х °C)/Вт.

Различие в добавлении расчетного запаса

При расчете кожухотрубных теплообменников расчетный запас добавляется путем увеличения длины труб при сохранении расхода среды через каждую трубу. При расчете пластинчатого теплообменника такой же расчетный запас обеспечивается за счет добавления параллельных каналов или посредством уменьшения расхода в каждом канале. Это приводит к снижению степени турбулентности течения среды, уменьшению эффективности теплообмена и увеличению опасности загрязнения каналов теплообменника. Использование слишком большого коэффициента загрязнения может привести к повышенной интенсивности образования отложений.Для пластинчатого теплообменника, работающего в режиме вода/вода, значение расчетного запаса от 0 до 15 % (в зависимости от качества воды) можно считать вполне достаточным.