Свинец химический элемент — свойства и применение. Технические и пользовательские характеристики, а также свойства металла свинец


Свинец часто называют одним из наиболее древних с точки зрения истории металлов, поскольку человечество научилось его добывать и обрабатывать еще в 6400 г. до н.э. «Промышленные» масштабы переработки свинца отмечались в Древнем Риме (около 80 тысяч тонн ежегодно), что объяснялось доступностью этого металла и простотой его выплавки. Римляне делали из него трубы для своих водопроводов, однако уже тогда они догадывались о токсичности вещества.

Физические свойства свинца

Свинец – тяжелый металл с атомной массой 207,2 г/моль. При этом чистый он настолько мягок, что может быть разрезан ножом. Основные физические характеристики свинца:

  • плотность (н. у.) – 11,3415 г/см³
  • t плавления – 327,46°C (600,61 K)
  • t кипения – 1749°C (2022 K)
  • теплопроводность (при 300 K) – 35,3 Вт/(м·К)
  • предел прочности на растяжение - 12-13 МПа

Свинец: химические свойства

В химических соединениях элемент Pb достигает двух степеней окисления: +2 и +4, при которых он в состоянии проявлять и металлические, и неметаллические свойства. Растворимые соли свинца представлены:

  • ацетатом Pb(CH 3 COO) 2
  • нитратом Pb(NO 3) 2
  • сульфатом PbSO 4
  • хроматом PbCrO 4


При обычной температуре свинец не растворяется в чистой воде, чего нельзя сказать о воде, насыщенной кислородом. Также элемент Pb быстро растворяется в разбавленной азотной кислоте и концентрированной серной. Разбавленная серная на свинец не действует, а соляная действует слабо. Что касается щелочных сред, то в них, равно как и в кислых растворах, свинец превращается в восстановитель. При этом растворимый в воде свинец, в частности, его ацетат, является очень ядовитым.

Применение свинца

Чистый свинец используется в медицине (рентгеновские установки), геологии (его изотопы помогают определять возраст пород), но наибольшее распространение он получает в составе соединений:

  • сульфиды и иодиды свинца применяются в создании аккумуляторных батарей
  • нитраты и азиды – для изготовления взрывчатки
  • двуокиси и хлориды – для химических источников тока
  • арсениты и арсенаты – в сельском хозяйстве для уничтожения вредных насекомых
  • теллуриды – для производства термоэлектрогенераторов и холодильных установок


Также известно, что свинец задерживает радиацию, что объясняется его способностью прекрасно поглощать g-излучение. В результате, Pb выступает основным элементом для изготовления материалов радиационной защиты, применяемых при создании ядерных реакторов и рентгеновских установок.

Свинец известен с III - II тысячелетия до н.э. в Месопотамии, Египте и других древних странах, где из него изготовляли большие кирпичи (чушки), статуи богов и царей, печати и различные предметы быта. Из свинца делали бронзу, а также таблички для письма острым твердым предметом. В более позднее время римляне стали изготовлять из свинца трубы для водопроводов. В древности свинец сопоставлялся с планетой Сатурн и часто именовался сатурном. В средние века благодаря своему тяжелому весу свинец играл особую роль в алхимических операциях, ему приписывали способность легко превращаться в золото.

Нахождение в природе, получение:

Содержание в земной коре 1,6·10 -3 % по массе. Самородный свинец встречается редко, круг пород, в которых он установлен, достаточно широк: от осадочных пород до ультраосновных интрузивных пород. В основном встречается в виде сульфидов (PbS - свинцовый блеск).
Получение свинца из свинцового блеска проводят путем обжигательно-реакционной плавки: сначала подвергают шихту неполному обжигу (при 500-600°С), при котором часть сульфида переходит в оксид и сульфат:
2PbS + 3О 2 = 2РbО + 2SO 2 PbS + 2О 2 = РbSO 4
Затем, продолжая нагревание, прекращают доступ воздуха; при этом оставшийся сульфид регирует с оксидом и сульфатом, образуя металлический свинец:
PbS + 2РbО = 3Рb + SO 2 PbS + РbSO 4 = 2Рb +2SO 2

Физические свойства:

Один из самых мягких металлов, легко режется ножом. Обычно покрыт более или менее толстой плёнкой оксидов грязно-серого цвета, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет. Плотность - 11,3415 г/см 3 (при 20°C). Температура плавления - 327,4°C, температура кипения - 1740°C

Химические свойства:

При большой температуре свинец образует с галогенами соединения вида РbХ 2 , с азотом прямо не реагирует, при нагревании с серой образует сульфид PbS, кислородом окисляется до PbO.
В отсутствии кислорода свинец не реагирует с водой при комнатной температуре, но при действии горячего водяного пара образует оксиды свинца и водород. В ряду напряжений свинец стоит левее водорода, но он не вытесняет водород из разбавленных HCl и H 2 SO 4 , из-за перенапряжения выделения Н 2 на свинце, а также из-за образования на поверхности металла плёнки труднорастворимых солей, защищающих металл от дальнейшего действия кислот.
В концентрированных серной и соляной кислотах при нагревании свинец растворяется, образуя соответственно Pb(HSO 4) 2 и Н 2 [РbCl 4 ]. Азотная, а также некоторые органические кислоты (например, лимонная) растворяют свинец с получением солей Рb(II). Реагирует свинец и с концентрированными растворами щелочей:
Pb + 8HNO 3 (разб.,гор.) = 3Pb(NO 3) 2 + 2NO + 4H 2 O.
Pb + 3H 2 SO 4 (>80%) = Pb(HSO 4) 2 + SO 2 + 2H 2 O
Pb + 2NаOН (конц.) + 2H 2 O = Nа 2 + Н 2
Для свинца наиболее характерны соединения со степенью окисления: +2 и +4.

Важнейшие соединения:

Оксиды свинца - с кислородом свинец образует ряд соединений Рb 2 О, РbО, Рb 2 О 3 , Рb 3 О 4 , РbО 2 , преимущественно амфотерного характера. Многие из них окрашены в красные, жёлтые, чёрные, коричневые цвета.
Оксид свинца (II) - РbО. Красный (низкотемпературная a -модификация, глет) или желтый (высокотемпературная b -модификация, массикот). Термически устойчив. Очень плохо реагируют с водой, раствором аммиака. Проявляет амфотерные свойства, реагирует с кислотами и щелочами. Окисляется кислородом, восстанавливается водородом и монооксидом углерода.
Оксид свинца (IV) - РbО 2 . Платтнерит. Темно-коричневый, тяжелый порошок, при слабом нагревании разлагается без плавления. Не реагирует с водой, разбавленными кислотами и щелочами, раствором аммиака. Разлагается концентрированными кислотами, концентрированными щелочами при кипячении медленно переводится в раствор с образованием....
Сильный окислитель в кислой и щелочной среде.
Оксидам РbО и РbО 2 соответствуют амфотерные гидрооксиды Рb(ОН) 2 и Рb(ОН) 4 . Получение..., Свойства...
Рb 3 О 4 - свинцовый сурик . Рассматривается как смешаный оксид или орто-плюмбат свинца(II) - Рb 2 PbО 4 . Оранжево-красный порошок. При сильном нагревании разлагается, плавится только под избыточном давлением О 2 . Не реагирует с водой, гидратом аммиака. Разлагается конц. кислотами и щелочами. Сильный окислитель.
Соли свинца(II) . Как правило бесцветны, по растворимости в воде делятся на нерастворимые (например, сульфат, карбонат, хромат, фосфат, молибдат и сульфид), малорастворимые (йодид, хлорид и фторид) и растворимые (к примеру, ацетат, нитрат и хлорат свинца). Ацетат свинца, или свинцовый сахар , Pb(CH 3 COO) 2 ·3H 2 O, бесцветные кристаллы или белй порошок сладкого вкуса, медленно выветривается с потерей гидратной воды, относится к очень ядовитым веществам.
Халькогениды свинца - PbS, PbSe, и PbTe - кристаллы чёрного цвета, узкозонные полупроводники.
Соли свинца(IV) могут быть получены электролизом сильно подкисленных серной кислотой растворов солей свинца(II). Свойства...
Гидрид свинца(IV) - PbH 4 - газообразное вещество без запаха, которое очень легко разлагается на свинец и водород. Получается в небольших количествах при реакции Mg 2 Pb и разбавленной HCl.

Применение:

Свинец хорошо экранирует радиацию и рентгеновские лучи, применяется в качестве защитного материала, в частности, в рентгеновских кабинетах, в лабораториях, где существует опасность облучения радиацией. Также используют для изготовления пластин аккумуляторов (около 30% выплавляемого свинца), оболочек электрических кабелей, защиты от гамма-излучения (стенки из свинцовых кирпичей), как компонент типографских и антифрикционных сплавов, полупроводниковых материалов.

Свинец и его соединения, особенно органические, токсичны. Попадая в клетки, свинец дезактивирует ферменты, тем самым нарушая обмен веществ, вызывая умственную отсталость у детей, заболевания мозга. Свинец может заменять кальций в костях, становясь постоянным источником отравления. ПДК в атмосферном воздухе соединений свинца 0,003 мг/м 3 , в воде 0,03 мг/л, почве 20,0мг/кг.

Барсукова М. Петрова М.
ХФ ТюмГУ, 571 группа.

Источники: Википедия: http://ru.wikipedia.org/wiki/Свинец и др.,
Н.А.Фигуровский "Открытие элементов и происхождение их названий". Москва, Наука, 1970. (на сайте ХФ МГУ http://www.chem.msu.su/rus/history/element/Pb.html)
Реми Г. "Курс неорганической химии", т.1. Изд-во иностранной литературы, Москва.
Лидин Р.А. "Химические свойства неорганических соединений". М.: Химия, 2000. 480 с.: ил.

В художественной литературе часто приходится встречаться с эпитетом «свинцовый». Как правило, он означает тяжесть в прямом или переносном смысле; иногда же он указывает на угрюмый сине-серый цвет. Против последнего сравнения возражать не приходится. Первое же требует уточнений. Среди металлов, используемых техникой нашего времени, многие тяжелее свинца. Свинец всплывает на поверхность, будучи погружен в . В расплаве меди свинцовый кораблик, несомненно, опустился бы на дно, тогда как в золоте плавал бы с очень большой легкостью. «Бы» - потому, что этого произойти не может: свинец плавится задолго до меди или золота (температуры плавления - 327, 1083 и 1063°С соответственно), и кораблик расплавится раньше, чем утонет.
Народы древности не могли изготовить из свинца ни меча, ни лемеха, ни даже горшка - для этого он слишком мягок и легкоплавок. Но в природе нет ни одного металла, который при обычных условиях мог бы соперничать с ним в пластичности. По десятибалльной «алмазной» шкале Мооса сравнительная твердость элемента № 82 выражается цифрой 1,5. Чтобы получить на свинце какое-нибудь изображение или надпись, нет надобности прибегать к чекану, достаточно простого тиснения. Отсюда - свинцовые печати старины. И в наше время принято товарные вагоны, сейфы, складские помещения опечатывать свинцовой пломбой. Кстати, само слово «пломба» (а их сейчас делают из разных материалов) произошло, видимо, от латинского названия свинца plumbum; по-французски название элемента - plomb.

Столь примитивное использование пластичности свинца, как получение на нем оттисков, для современной техники кажется анахронизмом. Тем не менее отпечатки на свинце иногда незаменимы и в наше время.
При глубинном бурении инструмент отнюдь не застрахован от поломок, вызывающих подчас аварии. Если на глубине нескольких сот метров в скважине останется сломанный бур, то как его извлечь обратно, как подцепить?
Самое простое и падежное в таком случае средство - свинцовая болванка. Ее опускают в скважину, и она расплющивается от удара, наткнувшись на сломанный бур. Извлеченная на поверхность болванка «предъявит» отпечаток, по которому можно определить, каким образом, за какую часть зацепить обломок. Появились, правда, гораздо более удобные «осведомители» - каротажные телеустановки. Но насколько они дороже, прихотливей, сложнее!
Свинец очень легко куется и прокатывается. Уже при давлении 2 т/см 2 свинцовая стружка спрессовывается в сплошную монолитную массу. С увеличением давления до 5 т/см 2 твердый свинец переходит в текучее состояние. Свинцовую проволоку получают, продавливая через фильеру не расплав, а твердый свинец. Обычным волочением ее сделать нельзя из-за малой разрывной прочности свинца.

Свинец и наука

В Аламогордо - место первого атомного взрыва - Энрико Ферми выехал в танке, оборудованном свинцовой защитой. Чтобы понять, почему от гамма-излучения защищаются именно свинцом, нам необходимо обратиться к сущности поглощения коротковолнового излучения.
Гамма-лучи, сопровождающие радиоактивный распад, идут из ядра, энергия которого почти в миллион раз превышает ту, что «собрана» во внешней оболочке атома. Естественно, что гамма-лучи неизмеримо энергичнее лучей световых. Встречаясь с веществом, фотон или квант любого излучения теряет свою энергию, этим-то и выражается его поглощение. Но энергия лучей различна. Чем короче их волна, тем они энергичнее, или, как принято выражаться, жестче. Чем плотнее среда, через которую проходят лучи, тем сильнее она их задерживает. Свинец плотен. Ударяясь о поверхность металла, гамма-кванты выбивают из нее электроны, на что расходуют свою энергию. Чем больше атомный номер элемента, тем труднее выбить электрон с его внешней орбиты из-за большей силы притяжения ядром.
Возможен и другой случай, когда гамма-квант сталкивается с электроном, сообщает ему часть своей энергии и продолжает свое движение. Но после встречи он стал менее энергичным, более «мягким», и в дальнейшем слою тяжелого элемента поглотить такой квант легче. Это явление носит название комптон-эффекта по имени открывшего его американского ученого.
Чем жестче лучи, тем больше их проникающая способность - аксиома, не требующая доказательств. Однако ученых, положившихся на эту аксиому, ожидал весьма любопытный сюрприз. Вдруг выяснилось, что гамма-лучи энергией более 1 млн. эв задерживаются свинцом не слабее, а сильнее менее жестких! Факт, казалось, противоречащий очевидности. После проведения тончайших экспериментов выяснилось, что гамма-квант энергией более 1,02 Мэв в непосредственной близости от ядра «исчезает», превращаясь в пару электрон - позитрон, и каждая из частиц уносит с собой половину затраченной на их образование энергии. Позитрон недолговечен и, столкнувшись с электроном, превращается в гамма-квант, но уже меньшей энергии. Образование электронно-позитронных пар наблюдается только у гамма-квантов высокой энергии и только вблизи от «массивного» ядра, то есть в элементе с большим атомным номером.
Свинец - один из последних стабильных элементов таблицы Менделеева . И из тяжелых элементов - самый доступный, с отработанной веками технологией добычи, с разведанными рудами. И очень пластичный. И очень удобный в обработке. Вот почему свинцовая защита от излучения - самая распространенная. Пятнадцати-двадцатисантиметрового слоя свинца достаточно, чтобы предохранить людей от действия излучения любого известного науке вида.
Коротко упомянем еще об одной стороне служения свинца науке. Она тоже связана с радиоактивностью.
В часах, которыми мы пользуемся, нет свинцовых деталей. Но в тех случаях, когда время измеряют не часами и минутами, а миллионами лет, без свинца не обойтись. Радиоактивные превращения урана и тория завершаются образованием стабильных изотопов элемента № 82. При этом, правда, получается разный свинец. Распад изотопов 235U и 238U приводит в конечном итоге к изотопам 207РЬ и 208РЬ. Наиболее распространенный изотоп тория 232Th заканчивает свои превращения изотопом 208РЬ. Установив соотношение изотопов свинца в составе геологических пород, можно узнать, сколько времени существует тот или иной минерал. При наличии особо точных приборов (масс- спектрометров) возраст породы устанавливают по трем независимым определениям - по соотношениям 206Pb: 238U: 207Pb: 235U и 208Pb: 232Th.
Начнем с того, что эти строчки отпечатаны литерами, изготовленными из свинцового сплава. Главные компоненты типографских сплавов - свинец, олово и сурьма. Интересно, что свинец и олово стали использовать в книгопечатании с первых его шагов. Но тогда они не составляли единого сплава. Немецкий первопечатник Иоганн Гутенберг литеры из олова отливал в свинцовые формы, так как считал удобным чеканить из мягкого свинца формы, которые выдерживали определенное количество заливок олова. Нынешние оловянно-свинцовые типографские сплавы составляют так, чтобы они удовлетворяли многим требованиям: они должны иметь хорошие литьевые свойства и незначительную усадку, быть достаточно твердыми и химически стойкими по отношению к краскам и смывающим их растворам; при переплавке должно сохраняться постоянство состава.
Однако служение свинца человеческой культуре началось задолго до появления первых книг. Живопись появилась раньше письменности. На протяжении многих столетий художники использовали краски на свинцовой основе, и они до сих пор не вышли из употребления: желтая - свинцовый крон, красная - сурик и, конечно, свинцовые белила. Между прочим, именно из-за свинцовых белил кажутся темными картины старых мастеров. Под действием микропримесей сероводорода в воздухе свинцовые белила превращаются в темный сернистый свинец PbS...
С давних пор стенки гончарных изделий покрывали глазурями. Простейшая глазурь делается из окиси свинца и кварцевого песка. Ныне санитарный надзор запрещает использовать эту глазурь при изготовлении предметов домашнего обихода: контакт пищевых продуктов с солями свинца должен быть исключен. Но в составе майоликовых глазурей, предназначенных для декоративных целей, сравнительно легкоплавкие соединения свинца используют, как и прежде.
Наконец, свинец входит в состав хрусталя, точнее, не свинец, а его окись. Свинцовое стекло варится без каких-либо осложнений, оно легко выдувается и гранится, сравнительно просто нанести на него узоры и обычную нарезку, винтовую, в частности. Такое стекло хорошо преломляет световые лучи и потому находит применение в оптических приборах.
Добавляя в шихту свинец и поташ (вместо извести), приготовляют страз - стекло с блеском, большим, чем у драгоценных камней .

Свинец в медицине

Попадая в организм, свинец, как и большинство тяжелых металлов, вызывает отравления. И тем не менее свинец нужен медицине. Со времен древних греков остались во врачебной практике свинцовые примочки и пластыри, но этим не ограничивается медицинская служба свинца.
Желчь нужна не только сатирикам. Содержащиеся в ней органические кислоты, прежде всего гликохолевая С 23 Н 36 (ОН) 3 СОNНСН 2 СH 2 COOН, а также таурохолевая С 23 Н 36 (ОН) 3 СОNНСН 2 СH 2 SO 3 Н, стимулируют деятельность печени. А поскольку не всегда и не у всех печень работает с точностью хорошо отлаженного механизма, эти кислоты нужны медицине. Выделяют их и разделяют с помощью уксуснокислого свинца. Свинцовая соль гликохолевой кислоты выпадает при этом в осадок, а таурохолевой - остается в маточном растворе. Отфильтровав осадок, из маточного раствора выделяют и второй препарат, действуя опять же свинцовым соединением - основной уксусной солью.
Но главная работа свинца в медицине связана с диагностикой и рентгенотерапией. Он защищает врачей от постоянного рентгеновского облучения. Для практически полного поглощения лучей Рентгена достаточно на их пути поставить слой свинца в 2-3 мм. Вот почему медицинский персонал рентгеновских кабинетов облачен в фартуки, рукавицы и шлемы из резины, в состав которой введен свинец. И изображение на экране наблюдают через свинцовое стекло.
Таковы главные аспекты взаимоотношений человечества со свинцом - элементом, известным с глубокой древности, но и сегодня служащим человеку во многих областях его деятельности.

Министерство образования и науки РФ

«Свинец и его свойства»

Выполнил:

Проверил:

СВИНЕЦ (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева, атомный номер 82, атомная масса 207,2.

1.Свойства

Свинец обычно имеет грязно-серый цвет, хотя свежий его разрез имеет синеватый отлив и блестит. Однако блестящий металл быстро покрывается тускло-серой защитной пленкой оксида. Плотность свинца (11,34 г/см3) в полтора раза больше, чем у железа, вчетверо больше, чем у алюминия; даже серебро легче свинца. Недаром в русском языке «свинцовый» – синоним тяжелого: «Ненастной ночи мгла по небу стелется одеждою свинцовой»; «И как свинец пошел ко дну» – эти пушкинские строки напоминают, что со свинцом неразрывно связано понятие гнета, тяжести.

Свинец очень легко плавится – при 327,5° С, кипит при 1751° С и заметно летуч уже при 700° С. Этот факт очень важен для работающих на комбинатах по добыче и переработке свинца. Свинец – один из самых мягких металлов. Он легко царапается ногтем и прокатывается в очень тонкие листы. Свинец сплавляется со многими металлами. С ртутью он дает амальгаму, которая при небольшом содержании свинца жидкая.

2.Химические свойства

По химическим свойствам свинец – малоактивный металл: в электрохимическом ряду напряжений он стоит непосредственно перед водородом. Поэтому свинец легко вытесняется другими металлами из растворов его солей. Если опустить в подкисленный раствор ацетата свинца цинковую палочку, свинец выделяется на ней в виде пушистого налета из мелких кристалликов, имеющего старинного название «сатурнова дерева». Если затормозить реакцию, обернув цинк фильтровальной бумагой, вырастают более крупные кристаллы свинца. Наиболее типична для свинца степень окисления +2; соединения свинца(IV) значительно менее устойчивы. В разбавленных соляной и серной кислотах свинец практически не растворяется, в том числе из-за образования на поверхности нерастворимой пленки хлорида или сульфата. С крепкой серной кислотой (при концентрации более 80%) свинец реагирует с образованием растворимого гидросульфата Pb(HSO4)2, а в горячей концентрированной соляной кислоте растворение сопровождается образованием комплексного хлорида H 4 PbCl 6 . Разбавленной азотной кислотой свинец легко окисляется:

Pb + 4HNO 3 = Pb(NO 3) 2 + 2NO 2 + H 2 O.

Разложение нитрата свинца(II) при нагревании – удобный лабораторный метод получения диоксида азота:

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2 .

В присутствии кислорода свинец растворяется также в ряде органических кислот. При действии уксусной кислоты образуется легкорастворимый ацетат Pb(CH 3 COO) 2 (старинное название – «свинцовый сахар»). Свинец заметно растворим также в муравьиной, лимонной и винной кислотах. Растворимость свинца в органических кислотах могло раньше приводить к отравлениям, если пищу готовили в посуде, луженной или паянной свинцовым припоем. Растворимые соли свинца (нитрат и ацетат) в воде гидролизуются:

Pb(NO 3) 2 + H 2 O = Pb(OH)NO 3 + HNO 3 .

Взвесь основного ацетата свинца («свинцовая примочка») имеет ограниченное медицинское применение в качестве наружного вяжущего средства. Свинец медленно растворяется и в концентрированных щелочах с выделением водорода:

Pb + 2NaOH + 2H 2 O = Na 2 Pb(OH) 4 + H 2

что указывает на амфотерные свойства соединений свинца. Белый гидроксид свинца(II), легко осаждаемый из растворов его солей, также растворяется как в кислотах, так и в сильных щелочах:

Pb(OH) 2 + 2HNO 3 = Pb(NO 3) 2 + 2H 2 O;

Pb(OH) 2 + 2NaOH = Na 2 Pb(OH) 4

При стоянии или нагревании Pb(OH) 2 разлагается с выделением PbO. При сплавлении PbO со щелочью образуется плюмбит состава Na 2 PbO 2 . Из щелочного раствора тетрагидроксоплюмбата натрия Na2Pb(OH)4 тоже можно вытеснить свинец более активным металлом. Если в такой нагретый раствор положить маленькую гранулу алюминия, быстро образуется серый пушистый шарик, который насыщен мелкими пузырьками выделяющегося водорода и потому всплывает. Если алюминий взять в виде проволоки, выделяющийся на ней свинец превращает ее в серую «змею». При нагревании свинец реагирует с кислородом, серой и галогенами. Так, в реакции с хлором образуется тетрахлорид PbCl 4 – желтая жидкость, дымящая на воздухе из-за гидролиза, а при нагревании разлагающаяся на PbCl 2 и Cl 2 . (Галогениды PbBr 4 и PbI 4 не существуют, так как Pb(IV) – сильный окислитель, который окислил бы бромид- и иодид-анионы.) Тонкоизмельченный свинец обладает пирофорными свойствами – вспыхивает на воздухе. При продолжительном нагревании расплавленного свинца он постепенно переходит сначала в желтый оксид PbO (свинцовый глет), а затем (при хорошем доступе воздуха) – в красный сурик Pb 3 O 4 или 2PbO·PbO 2 . Это соединение можно рассматривать также как свинцовую соль ортосвинцовой кислоты Pb 2 . С помощью сильных окислителей, например, хлорной извести, соединения свинца(II) можно окислить до диоксида:

Pb(CH 3 COO) 2 + Ca(ClO)Cl + H 2 O = PbO 2 + CaCl 2 + 2CH 3 COOH

Диоксид образуется также при обработке сурика азотной кислотой:

Pb 3 O 4 + 4HNO 3 = PbO 2 + 2Pb(NO 3) 2 + 2H 2 O.

Если сильно нагревать коричневый диоксид, то при температуре около 300° С он превратится в оранжевый Pb 2 O 3 (PbO·PbO 2), при 400° С – в красный Pb 3 O 4 , а выше 530° С – в желтый PbO (разложение сопровождается выделением кислорода). В смеси с безводным глицерином свинцовый глет медленно, в течение 30–40 минут реагирует с образованием водоупорной и термостойкой твердой замазки, которой можно склеивать металл, стекло и камень. Диоксид свинца – сильный окислитель. Струя сероводорода, направленная на сухой диоксид, загорается; концентрированная соляная кислота окисляется им до хлора:

PbO 2 + 4HCl = PbCl 2 + Cl 2 + H 2 O,

сернистый газ – до сульфата:

PbO 2 + SO 2 = PbSO 4 ,

а соли Mn 2+ – до перманганат-ионов:

5PbO 2 + 2MnSO 4 + H 2 SO 4 = 5PbSO 4 + 2HMnO 4 + 2H 2 O.

Диоксид свинца образуется, а затем расходуется при зарядке и последующем разряде самых распространенных кислотных аккумуляторов. Соединения свинца(IV) обладают еще более типичными амфотерными свойствами. Так, нерастворимый гидроксид Pb(OH) 4 бурого цвета легко растворяется в кислотах и щелочах:

Pb(OH) 4 + 6HCl = H 2 PbCl 6 ;

Pb(OH) 4 + 2NaOH = Na 2 Pb(OH) 6 .

Диоксид свинца, реагируя со щелочью, также образует комплексный плюмбат(IV):

PbO 2 + 2NaOH + 2H 2 O = Na 2 .

Если же PbO2 сплавить с твердой щелочью, образуется плюмбат состава Na2PbO3. Из соединений, в которых свинец(IV) входит в состав катиона, наиболее важен тетраацетат. Его можно получить кипячением сурика с безводной уксусной кислотой:

Pb 3 O 4 + 8CH 3 COOH = Pb(CH 3 COO) 4 + 2Pb(CH 3 COO) 2 + 4H 2 O.

При охлаждении из раствора выделяются бесцветные кристаллы тетраацетата свинца. Другой способ – окисление ацетата свинца(II) хлором:

2Pb(CH 3 COO) 2 + Cl 2 = Pb(CH 3 COO) 4 + PbCl 2 .

Водой тетраацетат мгновенно гидролизуется до PbO 2 и CH 3 COOH. Тетраацетат свинца находит применение в органической химии в качестве селективного окислителя. Например, он весьма избирательно окисляет только некоторые гидроксильные группы в молекулах целлюлозы, а 5-фенил-1-пентанол под действием тетраацетата свинца окисляется с одновременной циклизацией и образованием 2-бензилфурана. Органические производные свинца – бесцветные очень ядовитые жидкости. Один из методов их синтеза – действие алкилгалогенидов на сплав свинца с натрием:

4C 2 H 5 Cl + 4PbNa = (C 2 H 5) 4 Pb + 4NaCl + 3Pb

Действием газообразного HCl можно отщеплять от тетразамещенных свинца один алкильный радикал за другим, заменяя их на хлор. Соединения R4Pb разлагаются при нагревании с образованием тонкой пленки чистого металла. Такое разложение тетраметилсвинца было использовано для определения времени жизни свободных радикалов. Тетраэтилсвинец – антидетонатор моторного топлива.

3.Применение

Используют для изготовления пластин для аккумуляторов (около 30% выплавляемого свинца), оболочек электрических кабелей, защиты от гамма-излучения (стенки из свинцовых кирпичей), как компонент типографских и антифрикционных сплавов, полупроводниковых материалов