Природный газ. Процесс горения


1. Описание предлагаемой технологии (метода) повышения энергоэффективности, его новизна и информированность о нем.

При сжигании топлива в котлах, процентное содержание «избыточного воздуха» может составлять от 3 до 70% (без учета присосов) от объема воздуха, кислород которого участвует в химической реакции окисления (сжигания) топлива.

«Избыточный воздух», участвующий в процессе сжигания топлива, это та часть атмосферного воздуха, кислород которого не участвует в химической реакции окисления (сжигания) топлива, но он необходим для создания требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котла. «Избыточный воздух» - величина переменная и для одного и того же котла она обратно пропорциональна количеству сжигаемого топлива, или чем меньше сжигается топлива, тем меньше требуется кислорода для его окисления (сжигания), но необходимо больше «избыточного воздуха» для создания требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котла. Процентное содержание «избыточного воздуха» в общем потоке воздуха, используемого для полного сжигания топлива, определяется по процентному содержанию кислорода в уходящих дымовых газах.

Если уменьшить процентное содержание «избыточного воздуха», то в уходящих дымовых газах появится окись углерода «СО» (ядовитый газ), что свидетельствует о недожоге топлива, т.е. его потере, а использование «избыточного воздуха» приводит к потере тепловой энергии на его нагрев, что увеличивает расход сжигаемого топлива и повышает выбросы парниковых газов «СО 2 » в атмосферу.

Атмосферный воздух состоит из 79% азота (N 2 - инертный газ без цвета, вкуса и запаха), который выполняет основную функцию по созданию требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства энергетической установки для полного и устойчивого сжигания топлива и 21% кислорода (О 2), который является окислителем топлива. Уходящие дымовые газы при номинальном режиме сжигания природного газа в котельных агрегатах состоят из 71% азота (N 2), 18% воды (Н 2 О), 9% углекислого газа (СО 2) и 2% кислорода (О 2). Процентное содержание кислорода в дымовых газах равное 2% (на выходе из топки) свидетельствует о 10% содержании избыточного атмосферного воздуха в общем потоке воздуха, участвующим в создании требуемого скоростного режима истечения топливно-воздушной смеси из горелочного устройства котельного агрегата для полного окисления (сжигания) топлива.

В процессе полного сжигания топлива в котлах необходимо утилизировать дымовые газы, замещая ими «избыточный воздух», что позволит предотвратить образование NOx (до 90,0%) и сократить выбросы «парниковых газов» (СО 2), а также расход сжигаемого топлива (до 1,5%).

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам для сжигания различных видов топлива и способам утилизации дымовых газов для сжигания топлива в энергетических установках.

Энергетическая установка для сжигания топлива содержит топку (1) с горелками (2) и конвективный газоход (3), подключенный через дымосос (4) и дымоход (5) к дымовой трубе (6); воздуховод (9) наружного воздуха, соединенный с дымоходом (5) через перепускной трубопровод (11) дымовых газов и воздуховодом (14) смеси наружного воздуха и дымовых газов, который соединен с дутьевым вентилятором (13); дроссель (10), установленный на воздуховоде (9), и задвижку (12), смонтированную на перепускном трубопроводе (11) дымовых газов, причем дроссель (10) и задвижка (12) оборудованы исполнительными механизмами; воздухоподогреватель (8), расположенный в конвективном газоходе (3), подключённый к дутьевому вентилятору (13) и соединенный с горелками (2) через воздуховод (15) нагретой смеси наружного воздуха и дымовых газов; датчик (16) отбора проб топочных газов, установленный на входе в конвективный газоход (3) и подключенный к газоанализатору (17) определения содержания кислорода и окиси углерода в топочных газах; электронный блок управления (18), который подключён к газоанализатору (17) и к исполнительным механизмам дросселя (10) и задвижки (12). Способ утилизации дымовых газов для сжигания топлива в энергетической установке включает отбор части дымовых газов со статическим давлением больше атмосферного из дымохода (5) и подачу ее через перепускной трубопровод (11) дымовых газов в воздуховод (9) наружного воздуха со статическим давлением наружного воздуха меньше атмосферного; регулирование подачи наружного воздуха и дымовых газов исполнительными механизмами дросселя (10) и задвижки (12), управляемыми электронным блоком управления (18), таким образом, чтобы процентное содержание кислорода в наружном воздухе снизилось до уровня, при котором на входе в конвективный газоход (3) содержание кислорода в топочных газах составляло менее 1% при отсутствии окиси углерода; последующее смешивание дымовых газов с наружным воздухом в воздуховоде (14) и дутьевом вентиляторе (13) для получения однородной смеси наружного воздуха и дымовых газов; нагрев полученной смеси в воздухоподогревателе (8) за счет утилизации тепла топочных газов; подачу нагретой смеси в горелки (2) через воздуховод (15).

2. Результат повышения энергоэффективности при массовом внедрении.
Экономия сжигаемого топлива в котельных, на ТЭЦ или ГРЭС до 1,5%

3. Существует ли необходимость проведения дополнительных исследований для расширения перечня объектов для внедрения данной технологии?
Существует, т.к. предлагаемую технологию можно применить также и для двигателей внутреннего сгорания и для газотурбинных установок.

4. Причины, по которым предлагаемая энергоэффективная технология не применяются в массовом масштабе.
Основной причиной является новизна предлагаемой технологии и психологическая инерция специалистов в области теплоэнергетики. Необходима медиатизация предлагаемой технологии в Министерствах Энергетики и Экологии, энергетических компаниях генерирующих электрическую и тепловую энергию.

5. Существующие меры поощрения, принуждения, стимулирования для внедрения предлагаемой технологии (метода) и необходимость их совершенствования.
Введение новых более жестких экологических требований к выбросам NOx от котельных агрегатов

6. Наличие технических и других ограничений применения технологии (метода) на различных объектах.
Расширить действие п. 4.3.25 «ПРАВИЛ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И СЕТЕЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ МИНЭНЕРГО РФ ОТ 19 ИЮНЯ 2003 Г. № 229» для котлов сжигающих любые виды топлива. В следующей редакции: «…На паровых котлах, сжигающих любое топливо, в регулировочном диапазоне нагрузок его сжигание должно осуществляться, как правило, при коэффициентах избытка воздуха на выходе из топки менее 1,03…».

7. Необходимость проведения НИОКР и дополнительных испытаний; темы и цели работ.
Необходимость проведения НИОКР заключается в получении наглядной информации (учебного фильма) для ознакомления сотрудников теплоэнергетических компаний с предлагаемой технологией.

8. Наличие постановлений, правил, инструкций, нормативов, требований, запретительных мер и других документов, регламентирующих применение данной технологии (метода) и обязательных для исполнения; необходимость внесения в них изменений или необходимость изменения самих принципов формирования этих документов; наличие ранее существовавших нормативных документов, регламентов и потребность в их восстановлении.
Расширить действия «ПРАВИЛ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И СЕТЕЙ РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ МИНЭНЕРГО РФ ОТ 19 ИЮНЯ 2003 Г. № 229»

п. 4.3.25 для котлов сжигающих любые виды топлива. В следующей редакции: «…На паровых котлах, сжигающих топливо, в регулировочном диапазоне нагрузок его сжигание должно осуществляться, как правило, при коэффициентах избытка воздуха на выходе из топки менее 1,03… ».

п. 4.3.28. «…Растопка котла на сернистом мазуте должна производиться с предварительно включенной системой подогрева воздуха (калориферы, система рециркуляции горячего воздуха). Температура воздуха перед воздухоподогревателем в начальный период растопки на мазутном котле должна быть, как правило, не ниже 90°С. Растопка котла на любом другом виде топлива должна производиться с предварительно включенной системой рециркуляции воздуха »

9. Необходимость разработки новых или изменения существующих законов и нормативно-правовых актов.
Не требуется

10. Наличие внедренных пилотных проектов, анализ их реальной эффективности, выявленные недостатки и предложения по совершенствованию технологии с учетом накопленного опыта.
Испытание предлагаемой технологии осуществлялось на настенном газовом котле с принудительной тягой и выводом уходящих дымовых газов (продуктов сгорания природного газа) на фасад здания номинальной мощностью 24,0 кВт, но под нагрузкой 8,0 кВт. Подача дымовых газов в котел осуществлялась за счет короба, устанавливаемого на расстоянии 0,5 м от факельного выброса коаксиальной дымовой трубы котла. Короб задерживал уходящие дымовые, которые в свою очередь замещали «избыточный воздух», необходимый для полного сжигания природного газа, а газоанализатором, установленным в отводе газохода котла (штатном месте) контролировались выбросы. В результате эксперимента удалость снизить выбросы NOx на 86,0% и сократить выбросы «парниковых газов» СО2 1,3%.

11. Возможность влияния на другие процессы при массовом внедрении данной технологии (изменение экологической обстановки, возможное влияние на здоровье людей, повышение надежности энергоснабжения, изменение суточных или сезонных графиков загрузки энергетического оборудования, изменение экономических показателей выработки и передачи энергии и т.п.).
Улучшение экологической обстановки, влияющей на здоровье людей и снижение затрат на топливо при выработке тепловой энергии.

12. Необходимость специальной подготовки квалифицированных кадров для эксплуатации внедряемой технологии и развития производства.
Достаточен будет тренинг существующего обслуживающего персонала котельных агрегатов с предлагаемой технологией.

13. Предполагаемые способы внедрения:
коммерческое финансирование (при окупаемости затрат), так как предлагаемая технология окупается максимум в течение двух лет.

Информация предоствлена: Ю. Панфил, а/я 2150, г. Кишинев, Молдова, MD 2051, e-mail: [email protected]


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

состав продуктов полного сгорания

В состав продуктов полного сгорания входят также балластные составляющие- азот (N2) и кислород (О2).

Азот всегда попадает в топку с воздухом, а кислород остается от не использованных в процессе сгорания воздушных потоков. Таким образом, дымовые газы, образующиеся при полном сгорании газообразного топлива, состоят из четырех компонентов: СОг, Н2О, Ог и N2

При неполном сгорании газообразного топлива в дымовых газах появляются горючие компоненты, оксид углерода, водород, а иногда и метан. При большом химическом недожоге в продуктах сгорания появляются частицы углерода, из которых образуется сажа. Неполное сжигание газа может возникнуть при недостатке воздуха в зоне горения (сст>1), неудовлетворительном смешении воздуха с газом, соприкосновении факела с холодными стенками, которое влечет обрыв реакции горения.

Пример. Допустим, что от сжигании 1 м3 дашавского газа образуется сухих продуктов сгорания Kci-35 м3/м3, при этом в продуктах сгорания содержатся горючие составляющие в размере: СО=0,2%; Н2=0,10/о; СН4= = 0,05%.

Определить потерю теплоты от химической неполноты сгорания. Эта потеря равна Q3=VC, г ("26, ЗСО+Ю8Н3 + 358СН4) = 35 (126,3-0,2+ 108-0,1+358-0,05) =

1890 кДж/м3.

Точка росы продуктов сгорания определяется следующим образом. Сначала находят полный объем продуктов сгорания

и, зная количество водяных паров Vhn, которое в них содержится, определяют парциальное давление водяных паров Рнго (давление насыщенного водяного пара при определенной температуре) по формуле

P»to=vmlVr, бар.

Каждому значению парциального давления водяных паров соответствует определенная точка росы.

Пример. От сжигания 1 м3 дашавского природного газа при ат = 2,5 образуется продуктов сгорания Vr = 25 м3/м3, в том числе водяных паров Vsn = 2,4 м3/м3. Требуется определить температуру точки росы.

Парциальное давление водяных паров в продуктах сгорания равно

^0=^/^ = 2,4/25 = 0,096 бара.

Найденному парциальному давлению соответствует температура 46 °С. Это и есть точка росы. Если дымовые газы данного состава будут иметь температуру ниже 46 "С, то начнется процесс конденсации водяных паров.

Экономичность работы бытовых печей, переведенных на газовое топливо, характеризуется коэффициентом полезного действия (КПД), КПД любого теплового аппарата определяется из теплового баланса, т. е. равенства между теплотой, образовавшейся при сжигании топлива, и расходом этой теплоты на полезный обогрев.

При эксплуатации газовых бытовых печей имеют место случаи, когда в дымовых трубах уходящие газы охлаждаются до точки росы. Точкой росы называется температура, до которой нужно охладить воздух или другой газ, чтобы содержащийся в нем водяной пар достиг состояния насыщения.

Регулирование процесса горения (Основные принципы горения)

>> Вернуться к содержанию

Для оптимального горения необходимо использовать большее количество воздуха, чем следует из теоретического расчёта химической реакции (стехиометрический воздух).

Это вызвано необходимостью окислить всё имеющееся в наличии топливо.

Разница между реальным количеством воздуха и стехиометрическим количеством воздуха называется избытком воздуха. Как правило, избыток воздуха находится в пределах от 5% до 50% в зависимости от типа топлива и горелки.

Обычно, чем труднее окислить топливо, тем большее количество избыточного воздуха требуется.

Избыточное количество воздуха не должно быть чрезмерным. Чрезмерное количество подаваемого воздуха для горения снижает температуру дымовых газов и увеличивает тепловые потери теплогенератора. Кроме того, при определённом предельном количестве избыточного воздуха, факел слишком сильно охлаждается и начинают образовываться CO и сажа. И наоборот, недостаточное количество воздуха вызывает неполное сгорание и те же самые проблемы, указанные выше. Поэтому, чтобы обеспечить полное сгорание топлива и высокую эффективность горения количество избыточного воздуха должно быть очень точно отрегулировано.

Полнота и эффективность сгорания проверяются измерениями концентрации угарного газа CO в дымовых газах. Если угарного газа нет, значит сгорание произошло полностью.

Косвенно уровень избыточного воздуха можно рассчитать, измеряя концентрацию свободного кислорода O 2 и/или двуокиси углерода СO 2 в дымовых газах.

Количество воздуха будет примерно в 5 раз больше, чем измеренное количество углерода в объёмных процентах.

Что касается СO 2 , то его количество в дымовых газах зависит только от количества углерода в топливе, а не от количества избыточного воздуха. Его абсолютное количество будет постоянным, а процент от объёма будет изменяться в зависимости от количества избыточного воздуха, находящегося в дымовых газах. При отсутствии избыточного воздуха количество СO 2 будет максимальным, при увеличении количества избыточного воздуха, объёмный процент СO 2 в дымовых газах понижается. Меньшее количество избыточного воздуха соответствует большему количеству СO 2 и наоборот, поэтому горение идет более эффективно, когда количество СO 2 близко к своему максимальному значению.

Состав дымовых газов можно отобразить на простом графике с помощью "треугольника горения" или треугольника Оствальда, который строится для каждого типа топлива.

С помощью этого графика, зная процентное содержание СO 2 и O 2 , мы можем определить содержание CO и количество избыточного воздуха.

В качестве примера на рис. 10 приведен треугольник горения для метана.

Рисунок 10. Треугольник горения для метана

По оси X указано процентное содержание O 2 , по оси Y указано процентное содержание СO 2 . гипотенуза идет от точки А, соответствующей максимальному содержанию СO 2 (в зависимости от топлива) при нулевом содержании O 2 , до точки В, соответствующей нулевому содержанию СO 2 и максимальному содержанию O 2 (21%). Точка А соответствует условиям стехиометрического горения, точка В -отсутствию горения. Гипотенуза - это множество точек, соответствующих идеальному горению без CO.

Прямые линии, параллельные гипотенузе, соответствуют различному процентному содержанию CO.

Предположим, что наша система работает на метане и анализ дымовых газов показал, что содержание СO 2 составляет 10%, а содержание O 2 составляет 3%. Из треугольника для газа метана мы находим, то содержание CO равно 0, а содержание избыточного воздуха равно 15%.

В таблице 5 показано максимальное содержание СO 2 для разных видов топлива и значение, которое соответствует оптимальному горению. Это значение рекомендованное и рассчитано на основе опыта. Следует отметить, что когда из центральной колонки берётся максимальное значение необходимо произвести измерение выбросов, по процедуре описанной в главе 4.3.

Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.
  • Кэфициент полезного действия котла.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %

Теоретически необходимое количество воздуха для сжигания генераторного, доменного и коксового газов и их смесей определяют по формуле:

V 0 4,762/100 *((%CO 2 + %H 2)/2 + 2 ⋅ %CH 4 + 3 ⋅ %C 2 H 4 + 1,5 ⋅ %H 2 S - %O 2), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания природного газа:

V 0 4,762/100* (2 ⋅ %CH 4 + 3,5 ⋅ %C 2 H 6 + 5 ⋅ %C 3 H 8 + 6,5 ⋅ %C 4 H 10 + 8 ⋅ %C 5 H 12), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания твердых и жидких топлив:

V 0 = 0,0889 ⋅ %C P + 0,265 ⋅ %H P – 0,0333 ⋅ (%O P - %S P), нм 3 /кг, где % – по массе.

Действительное количество воздуха для горения

Необходимой полноты горения при сжигании топлива с теоретически необходимым количеством воздуха, т.е. при V 0 (α = 1), можно достичь только в том случае, если топливо полностью смешается с воздухом, идущим для горения, и представляет собой готовую горячую (стехиометрическую) смесь в газообразном виде. Этого достигают, например, при сжигании газообразного топлива с помощью горелок беспламенного горения и при сжигании жидкого топлива с предварительной их газификацией с помощью специальных горелок.

Действительное количество воздуха для сжигания топлива всегда больше, чем теоретически необходимое, так как в практических условиях для полноты сжигания почти всегда требуется некоторый избыток воздуха. Действительное количество воздуха определяют по формуле:

V α = αV 0 , нм 3 /кг или нм 3 /нм 3 топлива,

где α - коэффициент избытка воздуха.

При факельном способе сжигания, когда топливо с воздухом перемешивается в процессе горения, для газа, мазута и пылевидного топлива коэффициент избытка воздуха α = 1,05–1,25. При сжигании газа, предварительно полностью смешанного с воздухом, и при сжигании мазута с предварительной газификацией и интенсивным перемешиванием мазутного газа с воздухом α = 1,00–1,05. При слоевом способе сжигания углей, антрацита и торфа в механических топках при непрерывной подаче топлива и золоудалении – α = 1,3–1,4. При ручном обслуживании топок: при сжигании антрацитов α = 1,4 , при сжигании каменных углей α = 1,5–1,6 , при сжигании бурых углей α = 1,6–1,8. Для полугазовых топок α = 1,1–1,2.

Атмосферный воздух содержит некоторое количество влаги – d г/кг сухого воздуха. Поэтому объем влажного атмосферного воздуха, необходимого для горения, будет больше, чем рассчитанный по вышеприведенным формулам:

V B о = (1 + 0,0016d) ⋅ V о, нм 3 /кг или нм 3 /нм 3 ,

V B α = (1 + 0,0016d) ⋅ V α , нм 3 /кг или нм 3 /нм 3 .

Здесь 0,0016 = 1,293/(0,804*1000) представляет собой коэффициент пересчета весовых единиц влаги воздуха, выраженных в г/кг сухого воздуха, в объемные единицы – нм 3 водяных паров, содержащихся в 1 нм 3 сухого воздуха.

Количество и состав продуктов горения

Для генераторного, доменного, коксового газов и их смесей количество отдельных продуктов полного горения при сжигании с коэффициентом избытка воздуха, равным α:

Количество двуокиси углерода

V CO2 = 0,01(%CO 2 + %CO + %CH 4 + 2 ⋅ %C 2 H 4), нм 3 /нм 3

Количество сернистого ангидрида

V SO2 = 0,01 ⋅ %H 2 S нм 3 /нм 3 ;

Количество водяных паров

V H2O = 0,01(%H 2 + 2 ⋅ %CH 4 + 2 ⋅ %C 2 H 4 + %H 2 S + %H 2 O + 0,16d ⋅ V α), нм 3 /нм 3 ,

где 0,16d V B á нм 3 /нм 3 – количество водяных паров, вносимое влажным атмосферным воздухом при его влагосодержании d г/кг сухого воздуха;

Количество азота, переходящего из газа и вносимого с воздухом

Количество свободного кислорода, вносимого избыточным воздухом

V O2 = 0,21 (α - 1) ⋅ V O , нм 3 /нм 3 .

Общее количество продуктов горения генераторного, доменного, коксового газов и их смесей равно сумме их отдельных составляющих:

V дг = 0,01 (%CO 2 + %CO + %H 2 + 3 ⋅ %CH 4 + 4 ⋅ %C 2 H 4 + 2 ⋅ %H 2 S + %H 2 O + %N 2) + + V O (α + 0,0016 dα - 0,21), нм 3 /нм 3 .

Для природного газа количество отдельных продуктов полного горения определяют по формулам:

V CO2 = 0,01(%CO 2 + %CH 4 + 2 ⋅ %C 2 H 6 + 3 ⋅ %C 3 H 8 + 4 ⋅ %C 4 H 10 + 5 ⋅ %C 5 H 12) нм 3 /нм 3 ;

V H2O = 0,01(2 ⋅ %CH 4 + 3 ⋅ %C 2 H 6 + 4 ⋅ %C 3 H 8 + 5 ⋅ %C 4 H 10 + 6 ⋅ %C 5 H 12 + %H 2 O + 0,0016d V α) нм 3 /нм 3 ;

V N2 = 0,01 ⋅ %N 2 + 0,79 V α , нм 3 /нм 3 ;

V O2 = 0,21(α - 1) V O , нм 3 /нм 3 .

Общее количество продуктов горения природного газа:

V дг = 0,01(%CO 2 + 3 ⋅ %CH 4 + 5 ⋅ %C 2 H 6 +7 ⋅ %C 3 H 8 + 9 ⋅ %C 4 ⋅H 10 + 11 ⋅ %C 5 H 12 + %H 2 O + + %N 2) + V O (α + 0,0016dα - 0,21), нм 3 /нм 3 .

Для твердого и жидкого топлив количество отдельных продуктов полного горения:

V CO2 = 0,01855 %C P , нм 3 /кг (здесь и далее, % – процентное содержание в рабочем газе элементов по массе);

V SO2 = 0,007 % S P нм 3 /кг.

Для твердого и жидкого топлива

V H2O ХИМ = 0,112 ⋅ %H P , нм 3 /кг,

где V H2O ХИМ – водяные пары, образующиеся при горении водорода.

V H2O МЕХ = 0,0124 %W P , нм 3 /кг,

где V H2O МЕХ – водяные пары, образующиеся при испарении влаги рабочего топлива.

Если для распыления жидкого топлива подается пар в количестве W ПАР кг/кг топлива, то к объему водяных паров надо добавить величину 1,24 W ПАР нм 3 /кг топлива. Влага, вносимая атмосферным воздухом при влагосодержании d г/кг сухого воздуха, составляет 0,0016 d V á нм 3 /кг топлива. Следовательно, общее количество водяных паров:

V H2O = 0,112 ⋅ %H P + 0,0124 (%W P + 100 ⋅ %W ПАР) + 0,0016d V á , нм 3 /кг.

V N2 = 0,79 ⋅ V α + 0,008 ⋅ %N P , нм 3 /кг

V O2 = 0,21 (α - 1) V O , нм 3 /кг.

Общая формула для определения продуктов горения твердого и жидкого топлива:

V дг = 0,01 + V O (α + + 0,0016 dα - 0,21) нм 3 /кг.

Объем дымовых газов при сжигании топлива с теоретически необходимым количеством воздуха (V O нм 3 /кг, V O нм 3 /нм 3) определяют по приведенным расчетным формулам с коэффициентом избытка воздуха, равным 1,0, при этом в составе продуктов горения будет отсутствовать кислород.