Видимая вселенная. Размеры вселенной


Если бы наша Вселенная не расширялась, и скорость света стремилась к бесконечности, вопросы «видим ли мы всю Вселенную?» или «как далеко мы можем видеть Вселенную?» не имели бы смысла. Мы бы «в прямом эфире» видели бы все, что происходит в любом уголке космического пространства.

Но, как известно, скорость света конечна, а наша Вселенная расширяется, причем делает это с ускорением. Если скорость расширения постоянно возрастает, то существуют области, убегающие от нас со сверхсветовой скоростью, которые, согласно логике, видеть мы не можем. Но как такое возможно? Неужели это не противоречит Теории Относительности? В данном случае нет: ведь расширяется само пространство, а у объектов внутри него остаются досветовые скорости. Для наглядности можно представить себе нашу Вселенную в виде воздушного шарика, а пуговица, приклеенная к шарику, будет играть роль галактики. Попробуйте надуть шарик: галактика-пуговица начнет удаляться от вас вместе с расширением пространства шарика-Вселенной, хотя собственная скорость галактики-пуговицы останется нулевой.

Получается, должна существовать область, внутри которой находятся объекты, убегающие от нас со скоростью меньшей скорости света, и излучение которых мы можем фиксировать в свои телескопы. Эта область называется Сферой Хаббла . Она заканчивается границей, где скорость удаления далеких галактик будет совпадать со скоростью движения их фотонов, которые летят в нашем направлении (т.е. скоростью света). Эта граница получила название Горизонт Частиц . Очевидно, что объекты, находящиеся за Горизонтом Частиц, будут иметь скорость выше скорости света и их излучение не может нас достигнуть. Или все-таки может?

Давайте представим, что галактика Х находилась в Сфере Хаббла и испускала свет, который без проблем доходил до Земли. Но из-за ускоряющегося расширения Вселенной, галактика Х вышла за Горизонт Частиц, и уже удаляется от нас со скоростью выше скорости света. Но её фотоны, испущенные в момент нахождения в Сфере Хаббла, все ещё летят в направлении нашей планеты, и мы продолжаем их фиксировать, т.е. наблюдаем объект, который в данный момент удаляется от нас со скоростью, превышающей скорость света.

Но что, если галактика Y никогда не находилась в Сфере Хаббла и в момент начала излучения сразу же имела сверхсветовую скорость? Получается, ни один её фотон за все время существования не побывал в нашей части Вселенной. Но это не означает, что этого не произойдет в будущем! Нельзя забывать, что Сфера Хаббла тоже расширяется (вместе со всей Вселенной), и её расширение больше скорости, с которой от нас удаляется фотон галактики Y (мы нашли скорость удаления фотона галактики Y, вычтя из скорости убегания галактики Y скорость света). При выполнении данного условия когда-нибудь Сфера Хаббла догонит данные фотоны, и мы сможем засечь галактику Y. Наглядно данный процесс продемонстрирован на схеме внизу.

Пространство, включающее в себя Сферу Хаббла и Горизонт частиц , называется Метагалактикой или Видимой Вселенной .

Но есть ли что-нибудь, находящееся за Метагалактикой? Некоторые космические теории предполагают наличие так называемого Горизонта Событий . Возможно, вы уже слышали это название из описания черных дыр. Принцип его действия остается таким же: мы никогда не увидим то, что находится за пределами Горизонта Событий, так как находящиеся за Горизонтом Событий объекты будут иметь скорость убегания фотонов большую, чем скорость расширения Сферы Хаббла, поэтому их свет будет всегда убегать от нас.

Но чтобы Горизонт Событий существовал, Вселенная должна расширяться с ускорением (что согласуется с современными представлениями о мироустройстве). В конце концов, за Горизонт Событий уйдут все окружающие нас галактики. Это будет выглядеть так, будто время в них остановилось. Мы увидим, как они бесконечно уходят за пределы видимости, но так никогда и не увидим их полностью скрывшимися.

Это интересно: если бы вместо галактик мы наблюдали в телескоп большие часы с циферблатом, а уход за Горизонт Событий обозначал бы положение стрелок на 12:00, то они бы бесконечно долго замедлялись на 11:59:59, а изображение становилось бы более нечетким, т.к. до нас долетало бы всё меньше фотонов.

Но если ученые ошибаются, и в будущем расширение Вселенной начнет замедляться, то это сразу же отменяет существование Горизонта Событий, так как излучение любого объекта рано или поздно превысит скорость его убегания. Нужно будет только подождать сотни миллиардов лет…

Иллюстрация: depositphotos| JohanSwanepoel

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вселенная… Слово-то какое страшное. Масштабы того, что обозначается эти словом, не поддаются никакому осмыслению. Для нас проехать 1000 км - это уже расстояние, а что они значат в сравнении с гигантской цифрой, которая обозначает минимально возможный, с точки зрения учёных, диаметр нашей Вселенной.

Эта цифра не просто колоссальна - она ирреальна. 93 миллиарда световых лет! В километрах это выражается следующим числом 879 847 933 950 014 400 000 000.

Что такое Вселенная?

Что же такое Вселенная? Как объять разумом сие необъятное, ведь это же, как писал Козьма Прутков, никому не дано. Давайте обопрёмся на всем нам знакомые, простые вещи, способные путём аналогий привести нас к искомому постижению.

Из чего состоит наша Вселенная?

Чтобы разобраться в этом вопросе, пойдите прямо сейчас на кухню и возьмите поролоновую губку, которую вы используете для мытья посуды. Взяли? Так вот, вы держите в руках модель Вселенной. Если вы через лупу рассмотрите структуру губки поближе, то увидите, что она представляет собой множество открытых пор, ограниченных даже не стенками, а скорее перемычками.

Нечто подобное представляет собой и Вселенная, но только в качестве материала для перемычек используется не поролон, а… … Не планет, не звёздных систем, а галактик! Каждая из этих галактик состоит из сотен миллиардов звёзд, вращающихся вокруг центрального ядра, и каждая может иметь размер до сотен тысяч световых лет. Расстояние между галактиками обычно составляет около миллиона световых лет.

Расширение Вселенной

Вселенная не просто большая, она ещё вдобавок постоянно расширяется. Этот установленный с помощью наблюдения красного смещения факт, лёг в основу теории Большого взрыва.


Согласно данным НАСА возраст Вселенной с момента Большого взрыва, положившего ей начало, составляет приблизительно 13,7 миллиардов лет.

Что означает слово «Вселенная»?

Слово «Вселенная» имеет старославянские корни и, фактически, является калькой с греческого слово ойкумента (οἰκουμένη) , происходящего от глагола οἰκέω «населяю, обитаю» . Изначально этим словом обозначалась вся обитаемая часть мира. В церковном языке и по сей день сохраняется подобное значение: например, Константинопольский Патриарх в своём титуле имеет слово «Вселенский».

Термин происходит от слова «вселение» и только лишь созвучен слову «всё».

Что находится в центре Вселенной?

Вопрос о центре Вселенной - крайне запутанная штука и однозначно ещё не решён. Проблема в том, что непонятно, есть он вообще или его нет. Логично предположить, что, раз был Большой взрыв, из эпицентра которого и начали разлетаться бесчисленные галактики, значит, проследив траекторию каждой из них, можно на пересечении этих траекторий найти центр Вселенной. Но дело в том, что все галактики удаляются друг от друга приблизительно с равной скоростью и из каждой точки Вселенной наблюдается практически одна и та же картина.


Натеоретизировано здесь столько, что любой академик свихнётся. Даже привлекалось не раз четвёртое измерение, будь оно неладно, но особой чёткости в вопросе нет и по сей день.

Если же нет внятного определения центра Вселенной, то говорить о том, что находится в этом самом центре, мы считаем пустым занятием.

Что находится за пределами Вселенной?

О, это вопрос очень интересный, но такой же неопределённый, как и предыдущий. Вообще неизвестно, есть ли у Вселенной пределы. Возможно, их нет. Возможно, они есть. Возможно, кроме нашей Вселенной есть и другие с иными свойствами материи, с отличными от наших законами природы и мировыми константами. Никто не может доказательно дать ответ на подобный вопрос.

Проблема заключается в том, что мы имеем возможность наблюдать Вселенную лишь на расстоянии в 13,3 миллиарда световых лет. Почему? Очень просто: мы же помним, что возраст Вселенной составляет 13,7 миллиардов лет. Учитывая, что наше наблюдение происходит с задержкой, равной времени, потраченному светом на прохождение соответствующего расстояния, мы не можем наблюдать Вселенную ранее того момента как она, собственно, появилась на свет. На этом расстоянии мы видим Вселенную ясельного возраста…

Что ещё мы знаем о Вселенной?

Очень много и ничего! Мы знаем о реликтовом свечении, о космических струнах, о квазарах, чёрных дырах и о многом и многом другом. Некоторая часть этих знаний может быть обоснована и доказана; кое-что является лишь теоретическими выкладками, которые не могут быть подтверждены доказательно, а что-то - лишь плод богатой фантазии псевдоучёных.


Но одно мы знаем наверняка: никогда не настанет момент, в который мы сможем, облегчённо вытерев пот со лба, сказать: «Фу-у-х! Вопрос, наконец-то полностью изучен. Здесь больше ловить нечего!»

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Сфера Хаббла

Согласно закону Хаббла, описывающего расширение Вселенной, радиальные скорости галактик пропорциональны расстоянию до них с коэффициентом Н 0 , который сегодня называется постоянной Хаббла .

Значение Н 0 определяется по наблюдениям галактических объектов, расстояния до которых измерены, главным образом, по ярчайшим звёздам или цефеидам.

Большинство независимых оценок Н 0 дают для этого параметра в настоящее время значение приблизительно около 70 км/с на мегапарсек.

Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью примерно 7000 км/с.

В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, возраст Вселенной оценивается приблизительно в 13,8 млрд лет.

Относительно центра сферы Хаббла скорость расширения пространства внутри нее меньше световой, а вне ее – больше. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом – горизонтом фотонов .

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая – в пространстве - времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах.

Горизонт частиц

Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых.

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной. Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Для нерасширяющейся Вселенной размер горизонта частиц растет с возрастом, и рано или поздно все области Вселенной окажутся доступными для изучения. Но в расширяющейся Вселенной это не так. Более того, в зависимости от скорости расширения размер горизонта частиц может зависеть от времени, прошедшего с момента начала расширения, по более сложному закону, чем простая пропорциональность. В частности, в ускоренно расширяющейся Вселенной размер горизонта частиц может стремиться к постоянной величине. Это означает, что есть области принципиально ненаблюдаемые, есть процессы принципиально непознаваемые.

Кроме того, размер горизонта частиц ограничивает размер причинно-связанных областей. Действительно, две пространственные точки, разделенные расстоянием больше размера горизонта, никогда не взаимодействовали в прошлом. Поскольку самое быстрое взаимодействие (обмен лучами света) еще не произошло, то и любое другое взаимодействие исключено. Поэтому никакое событие в одной точке не может иметь в качестве своей причины событие, произошедшее в другой точке. В случае, когда размер горизонта частиц стремится к постоянной величине, Вселенная разбивается на причинно-несвязанные области, эволюция в которых протекает независимо.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение. Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению – Зх10 7 . Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» (10 -43 секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента большого взрыва общая теория относительности уже неприменима.

Горизонт событий

Горизонт событий – это поверхность в пространстве-времени . Такой горизонт возникает не во всякой космологической модели. Например, в замедляющейся Вселенной горизонта событий нет – любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Почему такое возможно? Причин может быть несколько. Самая простая – модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант – расширение с ускорением.

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий . Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно – свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий.

Прошлое и будущее

«Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, - рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе. - Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния - Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий. Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах.

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности. Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц - самым первым. Из такого определения становится понятным, что

горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем.

Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

Доктор педагогических наук Е. ЛЕВИТАН, действительный член Российской академии естественных наук

Наука и жизнь // Иллюстрации

Одна из лучших современных астрофизических обсерваторий - Европейская южная обсерватория (Чили). На снимке: уникальный инструмент этой обсерватории - "Телескоп новых технологий" (NТТ).

Фотография обратной стороны 3,6-метрового главного зеркала "Телескопа новых технологий".

Спиральная галактика NGC 1232 в созвездии Эридана (расстояние до нее около 100 млн световых лет). Размер - 200 световых лет.

Перед вами огромный, возможно, раскаленный до сотен миллионов градусов по Кельвину газовый диск (его диаметр около 300 световых лет).

Странный, казалось бы, вопрос. Разумеется, мы видим и Млечный Путь и другие, более близкие к нам звезды Вселенной. Но вопрос, поставленный в заглавии статьи, на самом-то деле не так уж прост, а потому постараемся разобраться в этом.

Яркое Солнце днем, Луна и звездная россыпь на ночном небе всегда привлекали к себе внимание человека. Судя по наскальным рисункам, на которых древнейшие живописцы запечатлели фигуры наиболее приметных созвездий, уже тогда люди, по крайней мере наиболее любознательные из них, вглядывались в таинственную красоту звездного неба. И уж конечно проявляли интерес к восходу и заходу Солнца, к загадочным изменениям вида Луны... Вероятно, так зарождалась "примитивно-созерцательная" астрономия. Произошло это на много тысяч лет раньше, чем возникла письменность, памятники которой стали для нас уже документами, свидетельствующими о зарождении и развитии астрономии.

Сначала небесные светила, может быть, были только предметом любопытства, потом - обожествления и, наконец, стали помогать людям, выполняя роль компаса, календаря, часов. Серьезным поводом для философствования о возможном устройстве Вселенной могло стать открытие "блуждающих светил" (планет). Попытки разгадать непонятные петли, которые описывают планеты на фоне якобы неподвижных звезд, привели к построению первых астрономических картин или моделей мира. Апофеозом их по праву считается геоцентрическая система мира Клавдия Птолемея (II век н. э.). Древние астрономы пытались (в основном безуспешно) определить (но еще не доказать!), какое место Земля занимает по отношению к семи известным тогда планетам (таковыми считались Солнце, Луна, Меркурий, Венера, Марс, Юпитер и Сатурн). И только Николаю Копернику (1473-1543) это наконец удалось.

Птолемея называют создателем геоцентрической, а Коперника - гелиоцентрической системы мира. Но принципиально эти системы отличались только содержащимися в них представлениями о расположении Солнца и Земли по отношению к истинным планетам (Меркурию, Венере, Марсу, Юпитеру, Сатурну) и к Луне.

Коперник, по существу, открыл Землю как планету, Луна заняла подобающее ей место спутника Земли, а центром обращения всех планет оказалось Солнце. Солнце и движущиеся вокруг него шесть планет (включая Землю) - это и была Солнечная система, какой ее представляли в XVI веке.

Система, как мы теперь знаем, далеко не полная. Ведь в нее кроме известных Копернику шести планет входят еще Уран, Нептун, Плутон. Последний был открыт в 1930 году и оказался не только самой далекой, но и самой маленькой планетой. Кроме того, в Солнечную систему входят около сотни спутников планет, два пояса астероидов (один - между орбитами Марса и Юпитера, другой, недавно открытый, - пояс Койпера - в области орбит Нептуна и Плутона) и множество комет с разными периодами обращения. Гипотетическое "Облако комет" (что-то вроде сферы их обитания) находится, по разным оценкам, на расстоянии порядка 100-150 тысяч астрономических единиц от Солнца. Границы Солнечной системы соответственно многократно расширились.

В начале 2002 года американские ученые "пообщались" со своей автоматической межпланетной станцией "Пионер-10", которая была запущена 30 лет назад и успела улететь от Солнца на расстояние 12 млрд километров. Ответ на радиосигнал, посланный с Земли, пришел через 22 ч 06 мин (при скорости распространения радиоволн около 300 000 км/сек). Учитывая сказанное, "Пионеру-10" еще долго придется лететь до "границ" Солнечной системы (конечно, достаточно условных!). А дальше он полетит к ближайшей на его пути звезде Альдебаран (самая яркая звезда в созвездии Тельца). Туда "Пионер-10", возможно, домчится и доставит заложенные в нем послания землян только через 2 млн лет...

От Альдебарана нас отделяют не менее 70 световых лет. А расстояние до самой близкой к нам звезды (в системе a Центавра) всего 4,75 светового года. Сегодня даже школьникам надлежит знать, что такое "световой год", "парсек" или "мегапарсек". Это уже вопросы и термины звездной астрономии, которой не только во времена Коперника, но и много позже просто не существовало.

Предполагали, что звезды - далекие светила, но природа их была неизвестна. Правда, Джордано Бруно, развивая идеи Коперника, гениально предположил, что звезды - это далекие солнца, причем, возможно, со своими планетными системами. Правильность первой части этой гипотезы стала совершенно очевидной только в XIX веке. А первые десятки планет около других звезд были открыты лишь в самые последние годы недавно закончившегося XX века. До рождения астрофизики и до применения в астрономии спектрального анализа к научной разгадке природы звезд просто невозможно было приблизиться. Вот и получалось, что звезды в прежних системах мира почти никакой роли не играли. Звездное небо было своеобразной сценой, на которой "выступали" планеты, а о природе самих звезд особо не задумывались (иногда упоминали о них, как... о "серебряных гвоздиках", воткнутых в твердь небесную). "Сфера звезд" была своеобразной границей Вселенной и в геоцентрической и в гелиоцентрической системе мира. Вся Вселенная, естественно, считалась видимой, а то, что за ее пределами, - "царствие небесное"...

Сегодня мы знаем, что невооруженным глазом видна лишь ничтожная часть звезд. Белесоватая полоса, протянувшаяся через все небо (Млечный Путь), оказалась, как догадывались еще некоторые древние греческие философы, множеством звезд. Наиболее яркие из них Галилей (в начале XVII века) различил даже с помощью своего весьма несовершенного телескопа. По мере увеличения размеров телескопов и их совершенствования астрономы получали возможность постепенно проникать в глубь Вселенной, как бы зондируя ее. Но далеко не сразу стало понятно, что звезды, наблюдаемые в разных направлениях неба, имеют какое-то отношение к звездам Млечного Пути. Одним из первых, кому удалось это доказать, был английский астроном и оптик В. Гершель. Поэтому с его именем связывают открытие нашей Галактики (ее иногда так и называют - Млечный Путь). Однако увидеть целиком нашу Галактику простому смертному, видимо, не дано. Конечно, достаточно заглянуть в учебник астрономии, чтобы обнаружить там ясные схемы: вид Галактики "сверху" (с отчетливой спиральной структурой, с рукавами, состоящими из звезд и газово-пылевой материи) и вид "сбоку" (в этом ракурсе наш звездный остров напоминает двояковыпуклую линзу, если не вдаваться в некоторые детали строения центральной части этой линзы). Схемы, схемы... А где же хотя бы одна фотография нашей Галактики?

Гагарин был первым из землян, кто увидел нашу планету из космического пространства. Теперь, наверное, каждый видел фотографии Земли из космоса, переданные с борта искусственных спутников Земли, с автоматических межпланетных станций. Сорок один год минул со времени полета Гагарина, и 45 лет со дня запуска первого ИСЗ - начала космической эры. Но и поныне никто не знает, сможет ли когда-нибудь человек увидеть Галактику, выйдя за ее пределы... Для нас это вопрос из области фантастики. А потому вернемся к реальности. Но только при этом, пожалуйста, подумайте о том, что всего лишь лет сто назад нынешняя реальность могла показаться самой невероятной фантастикой.

Итак, открыты Солнечная система и наша Галактика, в которой Солнце - одна из триллионов звезд (невооруженным глазом на всей небесной сфере видно около 6000 звезд), а Млечный Путь - проекция части Галактики на небесную сферу. Но подобно тому, как в XVI веке земляне поняли, что наше Солнце - самая рядовая звезда, мы теперь знаем, что наша Галактика - одна из множества ныне открытых других галактик. Среди них, как и в мире звезд, есть гиганты и карлики, "обычные" и "необычные" галактики, относительно спокойные и чрезвычайно активные. Они находятся на громадных расстояниях от нас. Свет от самой близкой из них мчится к нам почти два миллиона триста тысяч лет. А ведь эту галактику мы видим даже невооруженным глазом, она в созвездии Андромеды. Это очень большая спиральная галактика, похожая на нашу, и поэтому ее фотографии в какой-то степени "компенсируют" отсутствие снимков нашей Галактики.

Почти все открытые галактики удается рассмотреть лишь на фотографиях, полученных с помощью современных наземных телескопов-гигантов или космических телескопов. Применение радиотелескопов и радиоинтерферометров помогло существенно дополнить оптические данные. Радиоастрономия и внеатмосферная рентгеновская астрономия приоткрыли завесу над тайной процессов, происходящих в ядрах галактик и в квазарах (самых далеких из известных ныне объектов нашей Вселенной, почти неотличимых от звезд на фотографиях, полученных с помощью оптических телескопов).

В чрезвычайно огромном и практически скрытом от глаз мегамире (или в Метагалактике) удалось открыть его важные закономерности и свойства: расширение, крупномасштабную структуру. Все это несколько напоминает другой, уже открытый и во многом разгаданный микромир. Там исследуются совсем близкие к нам, но тоже невидимые кирпичики мироздания (атомы, адроны, протоны, нейтроны, мезоны, кварки). Познав устройство атомов и закономерности взаимодействия их электронных оболочек, ученые буквально "оживили" Периодическую систему элементов Д. И. Менделеева.

Самое важное то, что человек оказался способным открыть и познать непосредственно не воспринимаемые им миры различных масштабов (мегамир и микромир).

В этом контексте астрофизика и космология вроде бы не оригинальны. Но тут мы приближаемся к самому интересному.

"Занавес" издавна известных созвездий открылся, унося с собой последние потуги нашего "центризма": геоцентризма, гелиоцентризма, галактикоцентризма. Мы сами, как и наша Земля, как Солнечная система, как Галактика, - всего лишь "частицы" невообразимой по обыденным масштабам и по сложности структуры Вселенной, именуемой "Метагалактика". Она включает в себя множество систем галактик разной сложности (от "двойных" до скоплений и сверхскоплений). Согласитесь, что при этом осознание масштаба собственной ничтожной величины в необъятном мегамире не унижает человека, а, наоборот, возвышает мощь его Разума, способного открыть все это и разобраться в том, что было открыто ранее.

Казалось бы, пора и успокоиться, поскольку современная картина строения и эволюции Метагалактики в общих чертах создана. Однако, во-первых, она таит в себе много принципиально нового, ранее неведомого для нас, а во-вторых, не исключено, что кроме нашей Метагалактики есть и другие мини-вселенные, образующие пока еще гипотетическую Большую Вселенную...

Может быть, на этом стоит пока остановиться. Потому что нам бы сейчас, как говорится, со своей Вселенной разобраться. Дело в том, что она в конце ХХ века преподнесла астрономии большой сюрприз.

Тем, кто интересуется историей физики, известно, что в начале ХХ века некоторым великим физикам показалось, будто бы их титанический труд завершен, ибо все главное в этой науке уже открыто и исследовано. Правда, на горизонте оставалась пара странных "облачков", но мало кто предполагал, что они вскоре "обернутся" теорией относительности и квантовой механикой... Неужели что-то подобное ожидает астрономию?

Вполне вероятно, потому что наша Вселенная, наблюдаемая с помощью всей мощи современных астрономических инструментов и вроде бы уже довольно основательно изученная, может оказаться лишь вершиной вселенского айсберга. А где же его остальная часть? Как могло возникнуть столь дерзкое предположение о существовании еще чего-то громадного, материального и совершенно доселе неизвестного?

Вновь обратимся к истории астрономии. Одной из ее триумфальных страниц было открытие планеты Нептун "на кончике пера". Гравитационное воздействие какой-то массы на движение Урана натолкнуло ученых на мысль о существовании неизвестной еще планеты, позволило талантливым математикам определить ее местоположение в Солнечной системе, а потом точно указать астрономам, где ее искать на небесной сфере. И в дальнейшем гравитация оказывала астрономам подобные услуги: помогала открывать разные "диковинные" объекты - белых карликов, черные дыры. Так вот и теперь исследование движения звезд в галактиках и галактик в их скоплениях привело ученых к выводу о существовании таинственного невидимого ("темного") вещества (а может быть, вообще какой-то неведомой нам формы материи), и запасы этого "вещества" должны быть колоссальными.

По наиболее смелым оценкам, все то, что мы наблюдаем и учитываем во Вселенной (звезды, газово-пылевые комплексы, галактики и т. д.), составляет лишь 5 процентов от массы, которая "должна была бы быть" по расчетам, основанным на законах гравитации. Эти 5 процентов включают весь известный нам мегамир от пылинок и распространенных в космосе атомов водорода до сверхскоплений галактик. Некоторые астрофизики относят сюда даже всепроникающие нейтрино, считая, что, несмотря на их небольшую массу покоя, нейтрино своим бессчетным количеством вносят определенный вклад все в те же 5 процентов.

Но, может быть, "невидимое вещество" (или по крайней мере часть его, неравномерно распределенная в пространстве) - это масса потухших звезд или галактик либо таких невидимых космических объектов, как черные дыры? В какой-то мере подобное допущение не лишено смысла, хотя недостающие 95 процентов (или, по другим оценкам, 60-70 процентов) восполнить не удастся. Астрофизики и космологи вынуждены перебирать различные другие, в основном гипотетические, возможности. Наиболее фундаментальные идеи сводятся к тому, что значительная часть "скрытой массы" - это "темное вещество", состоящее из не известных нам элементарных частиц.

Дальнейшие исследования в области физики покажут, какие элементарные частицы кроме тех, которые состоят из кварков (барионы, мезоны и др.) или являются бесструктурными (например, мюоны), могут существовать в природе. Разгадать эту загадку будет, вероятно, легче, если объединить силы физиков, астрономов, астрофизиков, космологов. Немалые надежды возлагаются на данные, которые могут быть получены уже в ближайшие годы в случае успешных запусков специализированных космических аппаратов. Например, планируется запустить космический телескоп (диаметр 8,4 метра). Он сможет зарегистрировать огромное число галактик (до 28-й звездной величины; напомним, что невооруженным глазом видны светила до 6-й звездной величины), а это позволит построить карту распределения "скрытой массы" по всему небу. Из наземных наблюдений тоже можно извлечь определенную информацию, поскольку "скрытое вещество", обладая большой гравитацией, должно искривлять лучи света, идущие к нам от далеких галактик и квазаров. Обрабатывая на компьютерах изображения таких источников света, можно зарегистрировать и оценить невидимую гравитирующую массу. Подобного рода обзоры отдельных участков неба уже сделаны. (См. статью академика Н. Кардашева "Космология и проблемы SETI", недавно опубликованную в научно-популярном журнале президиума РАН "Земля и Вселенная", 2002, № 4.)

В заключение вернемся к вопросу, сформулированному в названии данной статьи. Думается, что после всего сказанного вряд ли на него можно уверенно дать положительный ответ... Древнейшая из самых древних наук - астрономия только начинается.

Каждый из нас хотя бы раз задумывался, в каком огромном мире мы живем. Наша планета — это безумное количество городов, сел, дорог, лесов, рек. Большинство за свою жизнь не успевает увидеть и половины. Представить грандиозные масштабы планеты сложно, но есть задача еще тяжелее. Размеры Вселенной — вот что, пожалуй, не под силу вообразить даже самому развитому уму. Попробуем разобраться, что думает на этот счет современная наука.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Метагалактика

Различные гипотезы определяют Вселенную как безразмерное или невыразимо огромное пространство, о большей части которого мы мало что знаем. Для внесения ясности и возможности обсуждения области, доступной для изучения, было введено понятие Метагалактика. Этот термин обозначает часть Вселенной, доступной для наблюдения астрономическими методами. Благодаря совершенствованию техники и знаний она постоянно увеличивается. Метагалактика является частью так называемой наблюдаемой Вселенной — пространства, в котором материя за период своего существования успела достигнуть современного положения. Когда речь заходит о понимании того, каковы размеры Вселенной, в большинстве случаев говорят о Метагалактике. Современный уровень развития техники позволяет наблюдать объекты, расположенные на расстоянии до 15 млрд световых лет от Земли. Время в определении этого параметра играет, как видно, не меньшую роль, чем пространство.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Множество

Посмотрим, что представляет собой Вселенная. Размеры космического пространства, выраженные в сухих цифрах, конечно, поражают, но трудны для понимания. Для многих будет проще осознать масштабы окружающего мира, если они узнают, сколько систем, подобных Солнечной, умещается в нем.

Наша звезда и окружающие ее планеты лишь крохотная часть Млечного пути. По данным астрономов, Галактика насчитывает примерно 100 миллиардов звезд. У некоторых из них уже обнаружены экзопланеты. Поражают не только размеры Вселенной — уже пространство, занимаемое ее ничтожной частью, Млечным Путем, внушает уважение. Свету для того чтобы пройти нашу галактику, требуется сто тысяч лет!

Местная группа

Внегалактическая астрономия, которая начала развиваться после открытий Эдвина Хаббла, описывает множество структур, схожих с Млечным путем. Ближайшие его соседи — это Туманность Андромеды и Большое и Малое Магеллановы Облака. Вместе с еще несколькими «спутниками» они составляют местную группу галактик. От соседнего аналогичного формирования ее отделяет приблизительно 3 млн световых лет. Даже страшно представить, сколько потребовалось бы современному самолету времени, чтобы преодолеть такое расстояние!

Наблюдаемые

Все местные группы разделены обширным пространством. Метагалактика включает несколько миллиардов структур, аналогичных Млечному пути. Размеры Вселенной действительно поражают. Световому лучу для преодоления расстояния от Млечного пути до Туманности Андромеды требуется 2 млн лет.

Чем дальше от нас расположен участок космоса, тем меньше мы знаем о его современном состоянии. Из-за конечности скорости света ученые могут получить информацию только о прошлом таких объектов. По тем же причинам, как уже было сказано, область Вселенной, доступной для астрономических изысканий, ограничена.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.